Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 593401, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329475

RESUMO

Seven emblematic Leonardo da Vinci's drawings were investigated through third generation sequencing technology (Nanopore). In addition, SEM analyses were carried out to acquire photographic documentation and to infer the nature of the micro-objects removed from the surface of the drawings. The Nanopore generated microbiomes can be used as a "bio-archive" of the drawings, offering a kind of fingerprint for current and future biological comparisons. This information might help to create a biological catalog of the drawings (cataloging), a microbiome-fingerprint for each single analyzed drawing, as a reference dataset for future studies (monitoring) and last but not least a bio-archive of the history of each single object (added value). Results showed a relatively high contamination with human DNA and a surprising dominance of bacteria over fungi. However, it was possible to identify typical bacteria of the human microbiome, which are mere contaminants introduced by handling of the drawings as well as other microorganisms that seem to have been introduced through vectors, such as insects and their droppings, visible through the SEM analyses. All drawings showed very specific bio-archives, but a core microbiome of bacteria and fungi that are repeatedly found in this type of material as true degraders were identified, such as members of the phyla Proteobacteria, Actinobacteria, and Firmicutes among bacteria, and fungi belonging to the classes Sordariomycetes and Eurotiomycetes. In addition, some similarities were observed that could be influenced by their geographical location (Rome or Turin), indicating the influence of this factor and denoting the importance of environmental and storage conditions on the specific microbiomes.

2.
Environ Microbiol ; 22(4): 1517-1534, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31291047

RESUMO

A multidisciplinary approach was carried out in order to study the biodeterioration and the associated microbiome of a XVIII Century wax seal coloured with minium. A small wax seal fragment was observed by scanning electron microscopy combined with energy dispersive spectroscopy in non-destructive mode. The same object was analysed by Raman and Fourier-transform infrared spectroscopy. The identification of the microbiota growing on the seal was performed with both a culture-dependent strategy, combined with hydrolytic assays, and high-throughput sequencing using the MinION platform. The whole bacterial 16S rRNA gene and the fungal markers ITS and 28S rRNA were targeted. It was observed that the carnauba wax coloured with lead tetroxide (minium) was covered by a biofilm consisting of a network of filaments and other structures of microbial origin. The culture-dependent and culture-independent investigations showed the presence of a complex microbiota composed mainly by fungal members, which demonstrated interesting properties related to lipids and lead processing. The formation of lead soaps and secondary biogenic minerals was also described.


Assuntos
Microbiota , Ceras , Bactérias/genética , Bactérias/ultraestrutura , Biodiversidade , Corantes , Fungos/genética , Fungos/ultraestrutura , Chumbo , Microscopia Eletrônica de Varredura , RNA Ribossômico 16S/genética , RNA Ribossômico 28S/genética , Sabões , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
3.
Microb Ecol ; 73(4): 815-826, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27975134

RESUMO

The gelatin-silver halide black and white prints represent an enormous photography heritage with a great value. Unaesthetic phenomena, the foxing stains that are caused by microbial growth on surface, have been described in stamps, drawings, books, and tissues but, until now, scarcely for photographic materials. In this study, a combination of various techniques, including culture-dependent and culture-independent approaches (RNA and DNA analysis), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and µ-Raman spectroscopy supported by X-ray fluorescence analysis (XRF), permitted to describe the microbial contamination dynamics of foxing stains present on the surface of two gelatin-silver halide photographs. The investigation provided also information on the effects of microbial activity on the materials' chemistry of the two prints. The action of microbial community resulted locally in either (a) formation of mixed aluminum-iron-potassium phosphate compounds that could be attributed to the hydrolytic activity of bacteria, (b) leaching of barite,


Assuntos
Bactérias/isolamento & purificação , Corantes/metabolismo , Fungos/isolamento & purificação , Consórcios Microbianos , Fotografação , Alumínio/metabolismo , Bactérias/citologia , Bactérias/genética , Bactérias/metabolismo , Aderência Bacteriana , Sequência de Bases , Técnicas de Cultura de Células/métodos , Corantes/análise , DNA/análise , Fungos/citologia , Fungos/genética , Fungos/metabolismo , Gelatina/metabolismo , Ferro/metabolismo , Viabilidade Microbiana , Microscopia Eletrônica de Varredura/métodos , Fosfatos/metabolismo , Compostos de Potássio/metabolismo , RNA/análise , RNA Ribossômico 16S/genética , RNA Ribossômico 28S/genética , Prata/metabolismo , Espectrometria por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...