Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Theor Biol ; 591: 111865, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-38823767

RESUMO

Dengue is a vector-borne disease transmitted by Aedes mosquitoes. The worldwide spread of these mosquitoes and the increasing disease burden have emphasized the need for a spatio-temporal risk map capable of assessing dengue outbreak conditions and quantifying the outbreak risk. Given that the life cycle of Aedes mosquitoes is strongly influenced by habitat temperature, numerous studies have utilized temperature-dependent development rates of these mosquitoes to construct virus transmission and outbreak risk models. In this study, we contribute to existing research by developing a mechanistic model for the mosquito life cycle that accurately captures its non-Markovian nature. Beginning with integral equations to track the mosquito population across different life cycle stages, we demonstrate how to derive the corresponding differential equations using phase-type distributions. This approach can be further applied to similar non-Markovian processes that are currently described with less accurate Markovian models. By fitting the model to data on human dengue cases, we estimate several model parameters, allowing the development of a global spatiotemporal dengue risk map. This risk model employs temperature and precipitation data to assess the environmental suitability for dengue outbreaks in a given area.


Assuntos
Aedes , Dengue , Dengue/transmissão , Dengue/epidemiologia , Animais , Aedes/virologia , Humanos , Surtos de Doenças , Mosquitos Vetores/virologia , Mosquitos Vetores/crescimento & desenvolvimento , Modelos Biológicos , Temperatura , Cadeias de Markov , Medição de Risco , Vírus da Dengue/fisiologia
3.
Sci Rep ; 12(1): 15679, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127385

RESUMO

As a highly contagious livestock viral disease, foot-and-mouth disease poses a great threat to the beef-cattle industry. Direct animal movement is always considered as a major route for between-farm transmission of FMD virus. Sharing contaminated equipment and vehicles have also attracted increasing interests as an indirect but considerable route for FMD virus transmission. With the rapid development of communication technologies, information-sharing techniques have been used to control epidemics. In this paper, we built farm-level time-series three-layer networks to simulate the between-farm FMD virus transmission in southwest Kansas by cattle movements (direct-contact layer) and truck visits (indirect-contact layer) and evaluate the impact of information-sharing techniques (information-sharing layer) on mitigating the epidemic. Here, the information-sharing network is defined as the structure that enables the quarantine of farms that are connected with infected farms. When a farm is infected, its infection status is shared with the neighboring farms in the information-sharing network, which in turn become quarantined. The results show that truck visits can enlarge the epidemic size and prolong the epidemic duration of the FMD outbreak by cattle movements, and that the information-sharing technique is able to mitigate the epidemic. The mitigation effect of the information-sharing network varies with the information-sharing network topology and different participation levels. In general, an increased participation leads to a decreased epidemic size and an increased quarantine size. We compared the mitigation performance of three different information-sharing networks (random network, contact-based network, and distance-based network) and found the outbreak on the network with contact-based information-sharing layer has the smallest epidemic size under almost any participation level and smallest quarantine size with high participation. Furthermore, we explored the potential economic loss from the infection and the quarantine. By varying the ratio of the average loss of quarantine to the loss of infection, we found high participation results in reduced economic losses under the realistic assumption that culling costs are much greater than quarantine costs.


Assuntos
Epidemias , Febre Aftosa , Animais , Bovinos , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Epidemias/veterinária , Fazendas , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Gado
4.
J R Soc Interface ; 19(188): 20210920, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35285285

RESUMO

After one pandemic year of remote or hybrid instructional modes, universities struggled with plans for an in-person autumn (fall) semester in 2021. To help inform university reopening policies, we collected survey data on social contact patterns and developed an agent-based model to simulate the spread of severe acute respiratory syndrome coronavirus 2 in university settings. Considering a reproduction number of R0 = 3 and 70% immunization effectiveness, we estimated that at least 80% of the university population immunized through natural infection or vaccination is needed for safe university reopening with relaxed non-pharmaceutical interventions (NPIs). By contrast, at least 60% of the university population immunized through natural infection or vaccination is needed for safe university reopening when NPIs are adopted. Nevertheless, attention needs to be paid to large-gathering events that could lead to infection size spikes. At an immunization coverage of 70%, continuing NPIs, such as wearing masks, could lead to a 78.39% reduction in the maximum cumulative infections and a 67.59% reduction in the median cumulative infections. However, even though this reduction is very beneficial, there is still a possibility of non-negligible size outbreaks because the maximum cumulative infection size is equal to 1.61% of the population, which is substantial.


Assuntos
COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Surtos de Doenças/prevenção & controle , Humanos , Pandemias/prevenção & controle , Universidades , Vacinação
5.
PLoS One ; 16(6): e0253498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166451

RESUMO

Human behavioral change around biosecurity in response to increased awareness of disease risks is a critical factor in modeling animal disease dynamics. Here, biosecurity is referred to as implementing control measures to decrease the chance of animal disease spreading. However, social dynamics are largely ignored in traditional livestock disease models. Not accounting for these dynamics may lead to substantial bias in the predicted epidemic trajectory. In this research, an agent-based model is developed by integrating the human decision-making process into epidemiological processes. We simulate human behavioral change on biosecurity practices following an increase in the regional disease incidence. We apply the model to beef cattle production systems in southwest Kansas, United States, to examine the impact of human behavior factors on a hypothetical foot-and-mouth disease outbreak. The simulation results indicate that heterogeneity of individuals regarding risk attitudes significantly affects the epidemic dynamics, and human-behavior factors need to be considered for improved epidemic forecasting. With the same initial biosecurity status, increasing the percentage of risk-averse producers in the total population using a targeted strategy can more effectively reduce the number of infected producer locations and cattle losses compared to a random strategy. In addition, the reduction in epidemic size caused by the shifting of producers' risk attitudes towards risk-aversion is heavily dependent on the initial biosecurity level. A comprehensive investigation of the initial biosecurity status is recommended to inform risk communication strategy design.


Assuntos
Criação de Animais Domésticos , Comportamento , Doenças dos Bovinos/epidemiologia , Bovinos , Simulação por Computador , Epidemias , Febre Aftosa/epidemiologia , Conhecimentos, Atitudes e Prática em Saúde , Gado , Modelos Biológicos , Animais , Feminino , Humanos , Kansas/epidemiologia , Masculino
6.
Sci Rep ; 11(1): 4891, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649364

RESUMO

Contact tracing can play a key role in controlling human-to-human transmission of a highly contagious disease such as COVID-19. We investigate the benefits and costs of contact tracing in the COVID-19 transmission. We estimate two unknown epidemic model parameters (basic reproductive number [Formula: see text] and confirmed rate [Formula: see text]) by using confirmed case data. We model contact tracing in a two-layer network model. The two-layer network is composed by the contact network in the first layer and the tracing network in the second layer. In terms of benefits, simulation results show that increasing the fraction of traced contacts decreases the size of the epidemic. For example, tracing [Formula: see text] of the contacts is enough for any reopening scenario to reduce the number of confirmed cases by half. Considering the act of quarantining susceptible households as the contact tracing cost, we have observed an interesting phenomenon. The number of quarantined susceptible people increases with the increase of tracing because each individual confirmed case is mentioning more contacts. However, after reaching a maximum point, the number of quarantined susceptible people starts to decrease with the increase of tracing because the increment of the mentioned contacts is balanced by a reduced number of confirmed cases. The goal of this research is to assess the effectiveness of contact tracing for the containment of COVID-19 spreading in the different movement levels of a rural college town in the USA. Our research model is designed to be flexible and therefore, can be used to other geographic locations.


Assuntos
COVID-19 , Simulação por Computador , Busca de Comunicante , Modelos Biológicos , População Rural , SARS-CoV-2 , Adolescente , Adulto , COVID-19/epidemiologia , COVID-19/transmissão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estados Unidos/epidemiologia
7.
Am J Trop Med Hyg ; 104(4): 1444-1455, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33534755

RESUMO

Vector-borne disease risk assessment is crucial to optimize surveillance, preventative measures (vector control), and resource allocation (medical supplies). High arthropod abundance and host interaction strongly correlate to vector-borne pathogen transmission. Increasing host density and movement increases the possibility of local and long-distance pathogen transmission. Therefore, we developed a risk-assessment framework using climate (average temperature and rainfall) and host demographic (host density and movement) data, particularly suitable for regions with unreported or underreported incidence data. This framework consisted of a spatiotemporal network-based approach coupled with a compartmental disease model and nonhomogeneous Gillespie algorithm. The correlation of climate data with vector abundance and host-vector interactions is expressed as vectorial capacity-a parameter that governs the spreading of infection from an infected host to a susceptible one via vectors. As an example, the framework is applied for dengue in Bangladesh. Vectorial capacity is inferred for each week throughout a year using average monthly temperature and rainfall data. Long-distance pathogen transmission is expressed with human movement data in the spatiotemporal network. We have identified the spatiotemporal suitability of dengue spreading in Bangladesh as well as the significant-incidence window and peak-incidence period. Analysis of yearly dengue data variation suggests the possibility of a significant outbreak with a new serotype introduction. The outcome of the framework comprised spatiotemporal suitability maps and probabilistic risk maps for spatial infection spreading. This framework is capable of vector-borne disease risk assessment without historical incidence data and can be a useful tool for preparedness with accurate human movement data.


Assuntos
Clima , Dengue/epidemiologia , Dengue/transmissão , Mosquitos Vetores/virologia , Análise Espaço-Temporal , Doenças Transmitidas por Vetores/epidemiologia , Aedes/virologia , Algoritmos , Animais , Bangladesh/epidemiologia , Vírus da Dengue/classificação , Vírus da Dengue/patogenicidade , Surtos de Doenças , Feminino , Humanos , Incidência , Medição de Risco/métodos , Sorogrupo , Temperatura , Doenças Transmitidas por Vetores/virologia
8.
PLoS One ; 15(10): e0240819, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33064750

RESUMO

As cattle movement data in the United States are scarce due to the absence of mandatory traceability programs, previous epidemic models for U.S. cattle production systems heavily rely on contact rates estimated based on expert opinions and survey data. These models are often based on static networks and ignore the sequence of movement, possibly overestimating the epidemic sizes. In this research, we adapt and employ an agent-based model that simulates beef cattle production and transportation in southwest Kansas to analyze the between-premises transmission of a highly contagious disease, foot-and-mouth disease. First, we assess the impact of truck contamination on the disease transmission with the truck agent following an independent clean-infected-clean cycle. Second, we add an information-sharing functionality such that producers/packers can trace back and forward their trade records to inform their trade partners during outbreaks. Scenario analysis results show that including indirect contact routes between premises via truck movements can significantly increase the amplitude of disease spread, compared with equivalent scenarios that only consider animal movement. Mitigation strategies informed by information sharing can effectively mitigate epidemics, highlighting the benefit of promoting information sharing in the cattle industry. In addition, we identify salient characteristics that must be considered when designing an information-sharing strategy, including the number of days to trace back and forward in the trade records and the role of different cattle supply chain stakeholders. Sensitivity analysis results show that epidemic sizes are sensitive to variations in parameters of the contamination period for a truck or a loading/unloading area of premises, and indirect contact transmission probability and future studies can focus on a more accurate estimation of these parameters.


Assuntos
Doenças dos Bovinos/transmissão , Surtos de Doenças/veterinária , Febre Aftosa/transmissão , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/patologia , Simulação por Computador , Febre Aftosa/epidemiologia , Febre Aftosa/patologia , Disseminação de Informação , Modelos Biológicos , Veículos Automotores , Inquéritos e Questionários
9.
Infect Dis Model ; 5: 563-574, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32835146

RESUMO

As an emerging infectious disease, the 2019 coronavirus disease (COVID-19) has developed into a global pandemic. During the initial spreading of the virus in China, we demonstrated the ensemble Kalman filter performed well as a short-term predictor of the daily cases reported in Wuhan City. Second, we used an individual-level network-based model to reconstruct the epidemic dynamics in Hubei Province and examine the effectiveness of non-pharmaceutical interventions on the epidemic spreading with various scenarios. Our simulation results show that without continued control measures, the epidemic in Hubei Province could have become persistent. Only by continuing to decrease the infection rate through 1) protective measures and 2) social distancing can the actual epidemic trajectory that happened in Hubei Province be reconstructed in simulation. Finally, we simulate the COVID-19 transmission with non-Markovian processes and show how these models produce different epidemic trajectories, compared to those obtained with Markov processes. Since recent studies show that COVID-19 epidemiological parameters do not follow exponential distributions leading to Markov processes, future works need to focus on non-Markovian models to better capture the COVID-19 spreading trajectories. In addition, shortening the infectious period via early case identification and isolation can slow the epidemic spreading significantly.

10.
Sci Rep ; 9(1): 16060, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690844

RESUMO

Network-based modelling of infectious diseases apply compartmental models on a contact network, which makes the epidemic process crucially dependent on the network structure. For highly contagious diseases such as Ebola virus disease (EVD), interpersonal contact plays the most vital role in human-to-human transmission. Therefore, for accurate representation of EVD spreading, the contact network needs to resemble the reality. Prior research has mainly focused on static networks (only permanent contacts) or activity-driven networks (only temporal contacts) for Ebola spreading. A comprehensive network for EVD spreading should include both these network structures, as there are always some permanent contacts together with temporal contacts. Therefore, we propose a two-layer temporal network for Uganda, which is at risk of an Ebola outbreak from the neighboring Democratic Republic of Congo (DRC) epidemic. The network has a permanent layer representing permanent contacts among individuals within the family level, and a data-driven temporal network for human movements motivated by cattle trade, fish trade, or general communications. We propose a Gillespie algorithm with the susceptible-infected-recovered (SIR) compartmental model to simulate the evolution of EVD spreading as well as to evaluate the risk throughout our network. As an example, we applied our method to a network consisting of 23 districts along different movement routes in Uganda starting from bordering districts of the DRC to Kampala. Simulation results show that some regions are at higher risk of infection, suggesting some focal points for Ebola preparedness and providing direction to inform interventions in the field. Simulation results also show that decreasing physical contact as well as increasing preventive measures result in a reduction of chances to develop an outbreak. Overall, the main contribution of this paper lies in the novel method for risk assessment, which can be more precise with an increasing volume of accurate data for creating the network model.


Assuntos
Algoritmos , Surtos de Doenças , Ebolavirus , Doença pelo Vírus Ebola , Modelos Biológicos , República Democrática do Congo/epidemiologia , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/transmissão , Humanos , Uganda/epidemiologia
11.
Sci Rep ; 9(1): 7253, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31076660

RESUMO

The recent outbreaks of the insect-vectored Zika virus have demonstrated its potential to be sexually transmitted, which complicates modeling and our understanding of disease dynamics. Autochthonous outbreaks in the US mainland may be a consequence of both modes of transmission, which affect the outbreak size, duration, and virus persistence. We propose a novel individual-based interconnected network model that incorporates both insect-vectored and sexual transmission of this pathogen. This model interconnects a homogeneous mosquito vector population with a heterogeneous human host contact network. The model incorporates the seasonal variation of mosquito abundance and characterizes host dynamics based on age group and gender in order to produce realistic projections. We use a sexual contact network which is generated on the basis of real world sexual behavior data. Our findings suggest that for a high relative transmissibility of asymptomatic hosts, Zika virus shows a high probability of sustaining in the human population for up to 3 months without the presence of mosquito vectors. Zika outbreaks are strongly affected by the large proportion of asymptomatic individuals and their relative transmissibility. The outbreak size is also affected by the time of the year when the pathogen is introduced. Although sexual transmission has a relatively low contribution in determining the epidemic size, it plays a role in sustaining the epidemic and creating potential endemic scenarios.


Assuntos
Aedes/virologia , Mosquitos Vetores/virologia , Infecção por Zika virus/virologia , Zika virus/patogenicidade , Animais , Surtos de Doenças , Epidemias , Humanos , Estações do Ano , Comportamento Sexual
12.
Sci Rep ; 9(1): 6237, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30996237

RESUMO

Swine movement networks among farms/operations are an important source of information to understand and prevent the spread of diseases, nearly nonexistent in the United States. An understanding of the movement networks can help the policymakers in planning effective disease control measures. The objectives of this work are: (1) estimate swine movement probabilities at the county level from comprehensive anonymous inventory and sales data published by the United States Department of Agriculture - National Agriculture Statistics Service database, (2) develop a network based on those estimated probabilities, and (3) analyze that network using network science metrics. First, we use a probabilistic approach based on the maximum information entropy method to estimate the movement probabilities among different swine populations. Then, we create a swine movement network using the estimated probabilities for the counties of the central agricultural district of Iowa. The analysis of this network has found evidence of the small-world phenomenon. Our study suggests that the US swine industry may be vulnerable to infectious disease outbreaks because of the small-world structure of its movement network. Our system is easily adaptable to estimate movement networks for other sets of data, farm animal production systems, and geographic regions.


Assuntos
Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Fazendas , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/prevenção & controle , Suínos , Meios de Transporte , Algoritmos , Animais , Bases de Dados Factuais , Iowa/epidemiologia , Probabilidade
13.
PLoS One ; 14(3): e0202721, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30835724

RESUMO

Rift Valley fever (RVF) is a zoonotic disease, that causes significant morbidity and mortality among ungulate livestock and humans in endemic regions. In East Africa, the causative agent of the disease is Rift Valley fever virus (RVFV) which is primarily transmitted by multiple mosquito species in Aedes and Mansonia genera during both epizootic and enzootic periods in a complex transmission cycle largely driven by environmental and climatic factors. However, recent RVFV activity in Uganda demonstrated the capability of the virus to spread into new regions through livestock movements, and underscored the need to develop effective mitigation strategies to reduce transmission and prevent spread among cattle populations. We simulated RVFV transmission among cows in 22 different locations of the Kabale District in Uganda using real world livestock data in a network-based model. This model considered livestock as a spatially explicit factor in different locations subjected to specific vector and environmental factors, and was configured to investigate and quantitatively evaluate the relative impacts of mosquito control, livestock movement, and diversity in cattle populations on the spread of the RVF epizootic. We concluded that cattle movement should be restricted for periods of high mosquito abundance to control epizootic spreading among locations during an RVF outbreak. Importantly, simulation results also showed that cattle populations with heterogeneous genetic diversity as crossbreeds were less susceptible to infection compared to homogenous cattle populations.


Assuntos
Modelos Biológicos , Febre do Vale de Rift/epidemiologia , Zoonoses/epidemiologia , Migração Animal , Animais , Bovinos/genética , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/transmissão , Simulação por Computador , Feminino , Variação Genética , Humanos , Gado , Masculino , Mosquitos Vetores/virologia , Febre do Vale de Rift/transmissão , Uganda/epidemiologia , Zoonoses/transmissão
14.
PLoS Comput Biol ; 15(3): e1006875, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30865618

RESUMO

West Nile virus (WNV)-a mosquito-borne arbovirus-entered the USA through New York City in 1999 and spread to the contiguous USA within three years while transitioning from epidemic outbreaks to endemic transmission. The virus is transmitted by vector competent mosquitoes and maintained in the avian populations. WNV spatial distribution is mainly determined by the movement of residential and migratory avian populations. We developed an individual-level heterogeneous network framework across the USA with the goal of understanding the long-range spatial distribution of WNV. To this end, we proposed three distance dispersal kernels model: 1) exponential-short-range dispersal, 2) power-law-long-range dispersal in all directions, and 3) power-law biased by flyway direction -long-range dispersal only along established migratory routes. To select the appropriate dispersal kernel we used the human case data and adopted a model selection framework based on approximate Bayesian computation with sequential Monte Carlo sampling (ABC-SMC). From estimated parameters, we find that the power-law biased by flyway direction kernel is the best kernel to fit WNV human case data, supporting the hypothesis of long-range WNV transmission is mainly along the migratory bird flyways. Through extensive simulation from 2014 to 2016, we proposed and tested hypothetical mitigation strategies and found that mosquito population reduction in the infected states and neighboring states is potentially cost-effective.


Assuntos
Febre do Nilo Ocidental/epidemiologia , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Aves/virologia , Culicidae/virologia , Humanos , Modelos Teóricos , Método de Monte Carlo , Mosquitos Vetores , Estados Unidos/epidemiologia , Febre do Nilo Ocidental/embriologia , Febre do Nilo Ocidental/virologia , Zoonoses/epidemiologia
15.
IEEE Trans Netw Sci Eng ; 6(1): 16-30, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34192124

RESUMO

People change their physical contacts as a preventive response to infectious disease propagations. Yet, only a few mathematical models consider the coupled dynamics of the disease propagation and the contact adaptation process. This paper presents a model where each agent has a default contact neighborhood set, and switches to a different contact set once she becomes alert about infection among her default contacts. Since each agent can adopt either of two possible neighborhood sets, the overall contact network switches among [Formula: see text] possible configurations. Notably, a two-layer network representation can fully model the underlying adaptive, state-dependent contact network. Contact adaptation influences the size of the disease prevalence and the epidemic threshold-a characteristic measure of a contact network robustness against epidemics-in a nonlinear fashion. Particularly, the epidemic threshold for the presented adaptive contact network belongs to the solution of a nonlinear Perron-Frobenius (NPF) problem, which does not depend on the contact adaptation rate monotonically. Furthermore, the network adaptation model predicts a counter-intuitive scenario where adaptively changing contacts may adversely lead to lower network robustness against epidemic spreading if the contact adaptation is not fast enough. An original result for a class of NPF problems facilitate the analytical developments in this paper.

16.
PLoS One ; 11(9): e0162759, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27662585

RESUMO

Rift Valley fever (RVF) is a zoonotic disease endemic in sub-Saharan Africa with periodic outbreaks in human and animal populations. Mosquitoes are the primary disease vectors; however, Rift Valley fever virus (RVFV) can also spread by direct contact with infected tissues. The transmission cycle is complex, involving humans, livestock, and multiple species of mosquitoes. The epidemiology of RVFV in endemic areas is strongly affected by climatic conditions and environmental variables. In this research, we adapt and use a network-based modeling framework to simulate the transmission of RVFV among hypothetical cattle operations in Kansas, US. Our model considers geo-located livestock populations at the individual level while incorporating the role of mosquito populations and the environment at a coarse resolution. Extensive simulations show the flexibility of our modeling framework when applied to specific scenarios to quantitatively evaluate the efficacy of mosquito control and livestock movement regulations in reducing the extent and intensity of RVF outbreaks in the United States.

17.
Nanomedicine (Lond) ; 10(1): 25-33, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25032980

RESUMO

AIM: To assess the impact of biocorona kinetics on expected tissue distribution of nanoparticles (NPs) across species. MATERIALS & METHODS: The potential fate of NPs in vivo is described through a simple and descriptive pharmacokinetic model using rate processes dependent upon basal metabolic rate coupled to dynamics of protein corona. RESULTS: Mismatch of time scales between interspecies allometric scaling and the kinetics of corona formation is potentially a fundamental issue with interspecies extrapolations of NP biodistribution. The impact of corona evolution on NP biodistribution across two species is maximal when corona transition half-life is close to the geometric mean of NP half-lives of the two species. CONCLUSION: While engineered NPs can successfully reach target cells in rodent models, the results may be different in humans due to the fact that the longer circulation time allows for further biocorona evolution.


Assuntos
Modelos Teóricos , Nanopartículas/uso terapêutico , Farmacocinética , Animais , Humanos , Cinética , Camundongos , Nanopartículas/química , Ratos , Propriedades de Superfície , Distribuição Tecidual
18.
ACS Nano ; 8(9): 9446-56, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25133703

RESUMO

Quantitative characterization of nanoparticle interactions with their surrounding environment is vital for safe nanotechnological development and standardization. A recent quantitative measure, the biological surface adsorption index (BSAI), has demonstrated promising applications in nanomaterial surface characterization and biological/environmental prediction. This paper further advances the approach beyond the application of five descriptors in the original BSAI to address the concentration dependence of the descriptors, enabling better prediction of the adsorption profile and more accurate categorization of nanomaterials based on their surface properties. Statistical analysis on the obtained adsorption data was performed based on three different models: the original BSAI, a concentration-dependent polynomial model, and an infinite dilution model. These advancements in BSAI modeling showed a promising development in the application of quantitative predictive modeling in biological applications, nanomedicine, and environmental safety assessment of nanomaterials.


Assuntos
Modelos Moleculares , Nanopartículas/química , Adsorção , Propriedades de Superfície
19.
Sci Rep ; 2: 632, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22953053

RESUMO

The spontaneous behavioral responses of individuals to the progress of an epidemic are recognized to have a significant impact on how the infection spreads. One observation is that, even if the infection strength is larger than the classical epidemic threshold, the initially growing infection can diminish as the result of preventive behavioral patterns adopted by the individuals. In order to investigate such dynamics of the epidemic spreading, we use a simple behavioral model coupled with the individual-based SIS epidemic model where susceptible individuals adopt a preventive behavior when sensing infection. We show that, given any infection strength and contact topology, there exists a region in the behavior-related parameter space such that infection cannot survive in long run and is completely contained. Several simulation results, including a spreading scenario in a realistic contact network from a rural district in the State of Kansas, are presented to support our analytical arguments.


Assuntos
Epidemias/prevenção & controle , Comportamentos Relacionados com a Saúde , Modelos Biológicos , Algoritmos , Simulação por Computador , Humanos , Controle de Infecções , Cadeias de Markov , Método de Monte Carlo , População Rural
20.
Implement Sci ; 6: 14, 2011 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-21349194

RESUMO

BACKGROUND: Recent study of complex networks has yielded many new insights into phenomenon such as social networks, the internet, and sexually transmitted infections. The purpose of this analysis is to examine the properties of a network created by the 'co-care' of patients within one region of the Veterans Health Affairs. METHODS: Data were obtained for all outpatient visits from 1 October 2006 to 30 September 2008 within one large Veterans Integrated Service Network. Types of physician within each clinic were nodes connected by shared patients, with a weighted link representing the number of shared patients between each connected pair. Network metrics calculated included edge weights, node degree, node strength, node coreness, and node betweenness. Log-log plots were used to examine the distribution of these metrics. Sizes of k-core networks were also computed under multiple conditions of node removal. RESULTS: There were 4,310,465 encounters by 266,710 shared patients between 722 provider types (nodes) across 41 stations or clinics resulting in 34,390 edges. The number of other nodes to which primary care provider nodes have a connection (172.7) is 42% greater than that of general surgeons and two and one-half times as high as cardiology. The log-log plot of the edge weight distribution appears to be linear in nature, revealing a 'scale-free' characteristic of the network, while the distributions of node degree and node strength are less so. The analysis of the k-core network sizes under increasing removal of primary care nodes shows that about 10 most connected primary care nodes play a critical role in keeping the k-core networks connected, because their removal disintegrates the highest k-core network. CONCLUSIONS: Delivery of healthcare in a large healthcare system such as that of the US Department of Veterans Affairs (VA) can be represented as a complex network. This network consists of highly connected provider nodes that serve as 'hubs' within the network, and demonstrates some 'scale-free' properties. By using currently available tools to explore its topology, we can explore how the underlying connectivity of such a system affects the behavior of providers, and perhaps leverage that understanding to improve quality and outcomes of care.


Assuntos
Prestação Integrada de Cuidados de Saúde/organização & administração , Medicina Baseada em Evidências , Apoio Social , United States Department of Veterans Affairs/organização & administração , Difusão de Inovações , Pesquisa sobre Serviços de Saúde , Humanos , Modelos Estatísticos , Qualidade da Assistência à Saúde , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA