Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 175(3): 1350-1369, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28899960

RESUMO

Drought stress is one of the main environmental problems encountered by crop growers. Reduction in arable land area and reduced water availability make it paramount to identify and develop strategies to allow crops to be more resilient in water-limiting environments. The plant hormone abscisic acid (ABA) plays an important role in the plants' response to drought stress through its control of stomatal aperture and water transpiration, and transgenic modulation of ABA levels therefore represents an attractive avenue to improve the drought tolerance of crops. Several steps in the ABA-signaling pathway are controlled by ubiquitination involving really interesting new genes (RING) domain-containing proteins. We characterized the maize (Zea mays) RING protein family and identified two novel RING-H2 genes called ZmXerico1 and ZmXerico2 Expression of ZmXerico genes is induced by drought stress, and we show that overexpression of ZmXerico1 and ZmXerico2 in Arabidopsis and maize confers ABA hypersensitivity and improved water use efficiency, which can lead to enhanced maize yield performance in a controlled drought-stress environment. Overexpression of ZmXerico1 and ZmXerico2 in maize results in increased ABA levels and decreased levels of ABA degradation products diphaseic acid and phaseic acid. We show that ZmXerico1 is localized in the endoplasmic reticulum, where ABA 8'-hydroxylases have been shown to be localized, and that it functions as an E3 ubiquitin ligase. We demonstrate that ZmXerico1 plays a role in the control of ABA homeostasis through regulation of ABA 8'-hydroxylase protein stability, representing a novel control point in the regulation of the ABA pathway.


Assuntos
Ácido Abscísico/metabolismo , Adaptação Fisiológica , Secas , Homeostase , Domínios RING Finger , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Zea mays/fisiologia , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Arabidopsis/fisiologia , Ritmo Circadiano/genética , Sequência Consenso , Desidratação , Retículo Endoplasmático/metabolismo , Estabilidade Enzimática , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Fluorescência Verde/metabolismo , Família Multigênica , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Ligação Proteica , Protoplastos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Sementes/crescimento & desenvolvimento , Estresse Fisiológico , Zea mays/enzimologia , Zea mays/genética
2.
Ann N Y Acad Sci ; 1149: 347-51, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19120246

RESUMO

Serial passage of axenically cultured Leishmania chagasi promastigotes results in a progressive diminution in resistance to complement-mediated lysis (CML), whereas high CML resistance is seen in infectious metacyclic promastigotes from the sandfly vector as well as metacyclic-like promastigotes within low-passage cultures at stationary growth phase. As we previously reported, in a screen seeking to identify novel genes involved in CML resistance: (1) a genomic cosmid library derived from DNA of CML-resistant L. chagasi promastigotes was transfected into high-passage (constitutively CML-sensitive) L. chagasi promastigotes; (2) transformants were screened for acquisition of CML-resistance; (3) multiple cosmid-transfectants exhibited partial CML resistance; and (4) the sequence for one of the cosmids (Cosmid 51) was determined. This report extends the analysis of Cosmid 51, and identifies by deletion analysis a subregion of the cosmid insert that is critical to the CML-resistance phenotype of Cosmid 51 transformants. We also report the sequence determination and initial CML-resistance activity of another cosmid that also confers partial resistance to CML.


Assuntos
Proteínas do Sistema Complemento/fisiologia , DNA de Protozoário/genética , Leishmania/genética , Animais , Cosmídeos
3.
J Eukaryot Microbiol ; 52(1): 17-22, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15702975

RESUMO

Crithidia fasciculata is a trypanosomatid flagellate that parasitizes several species of mosquito. Within the alimentary tract of its host, C. fasciculata exists in two forms: one is a non-motile form, attached in clusters to the lining of the gut, the other a more elongated form swimming freely in the gut lumen. We have developed an in vitro culture system that reproduces the appearance of these two distinct morphological forms. Using two different cultivation methods, shaking and stationary incubations, we have demonstrated that adherence phenotypes are growth-phase dependent. Organisms in the logarithmic phase of growth possess the ability to adhere to substrates; this ability is lost when the organism enters a stationary growth phase. Parasite adherence was independent of cultivation method or substrate. Furthermore, adherent forms of Crithidia maintained their adhesive properties following their removal from substrates. Our data reveal a growth-phase-regulated process of cell attachment that may influence the transmission and dissemination of this parasitic flagellate.


Assuntos
Crithidia fasciculata/crescimento & desenvolvimento , Culicidae/parasitologia , Animais , Adesão Celular/fisiologia , Crithidia fasciculata/fisiologia , Microscopia de Interferência , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...