Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Genet Metab ; 64(4): 243-9, 1998 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9758714

RESUMO

Hyperargininemia is a rare autosomal recessive disorder that results from a deficiency of hepatic type I arginase. At the genetic level, this deficiency in arginase activity is a consequence of random point mutations throughout the gene that lead to premature termination of the protein or to substitution mutations. Given the high degree of sequence homology between human liver and rat liver enzymes, we have mapped both patient and nonpatient mutations of the human enzyme onto the structure of the rat liver enzyme to rationalize the molecular basis for the low activities of these mutant arginases. Mutations identified in hyperargininemia patients affect the structure and function of the enzyme by compromising active-site residues, packing interactions in the protein scaffolding, and/or quaternary structure by destabilizing the assembly of the arginase trimer.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Arginase/genética , Arginina/sangue , Fígado/enzimologia , Mutação , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Animais , Arginase/química , Sítios de Ligação , Biopolímeros , Humanos , Estrutura Molecular , Ratos
3.
Biochemistry ; 36(34): 10558-65, 1997 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-9265637

RESUMO

Arginase is a thermostable (Tm = 75 degrees C) binuclear manganese metalloenzyme which hydrolyzes l-arginine to form l-ornithine and urea. The three-dimensional structures of native metal-depleted arginase, metal-loaded H101N arginase, and metal-depleted H101N arginase have been determined by X-ray crystallographic methods to probe the roles of the manganese ion in site A (Mn2+A) and its ligand H101 in catalysis and thermostability. We correlate these structures with thermal stability and catalytic activity measurements reported here and elsewhere [Cavalli, R. C., Burke, C. J., Kawamoto, S., Soprano, D. R., and Ash, D. E. (1994) Biochemistry 33, 10652-10657]. We conclude that the substitution of a wild-type histidine ligand to Mn2+A compromises metal binding, which in turn compromises protein thermostability and catalytic function. Therefore, a fully occupied binuclear manganese metal cluster is required for optimal catalysis and thermostability.


Assuntos
Arginase/química , Arginase/metabolismo , Manganês/metabolismo , Animais , Sítios de Ligação , Catálise , Dicroísmo Circular , Cristalografia por Raios X , Ativação Enzimática , Estabilidade Enzimática , Escherichia coli/genética , Fígado/enzimologia , Manganês/química , Manganês/farmacologia , Metaloproteínas/química , Metaloproteínas/metabolismo , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Dobramento de Proteína , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Temperatura
4.
Biochemistry ; 35(51): 16429-34, 1996 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-8987974

RESUMO

The three-dimensional structures of A65F, A65L, A65H, A65T, A65S, and A65G human carbonic anhydrase II (CAII) variants have been solved by X-ray crystallographic methods to probe the importance of residue 65 and the structural implications of its evolutionary drift in the greater family of carbonic anhydrase isozymes. Structure-activity relationships in this series of CAII variants are correlated with those established for other carbonic anhydrase isozymes. We conclude that a bulky side chain at position 65 hinders the formation of an effective solvent bridge between zinc-bound water and H64 and thereby hinders solvent-mediated proton transfer between these two groups [Jackman, J. E., Merz, K. M., Jr., & Fierke, C. A. (1996) Biochemistry 35, 16421-16428]. Despite the introduction of a polar hydroxyl group at this position, smaller side chains such as serine or threonine substituted for A65 do not perturb the formation of a solvent bridge between H64 and zinc-bound solvent. Thus, the evolution of residue 65 size is one factor affecting the trajectory of catalytic proton transfer.


Assuntos
Anidrases Carbônicas/química , Alanina/química , Alanina/genética , Animais , Sítios de Ligação , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Cristalografia por Raios X , Evolução Molecular , Variação Genética , Humanos , Técnicas In Vitro , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Prótons , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Nature ; 383(6600): 554-7, 1996 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-8849731

RESUMO

Each individual excretes roughly 10 kg of urea per year, as a result of the hydrolysis of arginine in the final cytosolic step of the urea cycle. This reaction allows the disposal of nitrogenous waste from protein catabolism, and is catalysed by the liver arginase enzyme. In other tissues that lack a complete urea cycle, arginase regulates cellular arginine and ornithine concentrations for biosynthetic reactions, including nitric oxide synthesis: in the macrophage, arginase activity is reciprocally coordinated with that of NO synthase to modulate NO-dependent cytotoxicity. The bioinorganic chemistry of arginase is particularly rich because this enzyme is one of very few that specifically requires a spin-coupled Mn2+-Mn2+ cluster for catalytic activity in vitro and in vivo. The 2.1 angstrom-resolution crystal structure of trimeric rat liver arginase reveals that this unique metal cluster resides at the bottom of an active-site cleft that is 15 angstroms deep. Analysis of the structure indicates that arginine hydrolysis is achieved by a metal-activated solvent molecule which symmetrically bridges the two Mn2+ ions.


Assuntos
Arginase/química , Manganês/química , Animais , Arginase/metabolismo , Arginina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Fígado/enzimologia , Metaloproteínas/química , Modelos Moleculares , Conformação Proteica , Estrutura Secundária de Proteína , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...