Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Life (Basel) ; 14(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38929693

RESUMO

Recent studies have shown that seagrasses could possess potential applications in the treatment of inflammatory disorders. Five seagrass species (Zostera muelleri, Halodule uninervis, Cymodocea rotundata, Syringodium isoetifolium, and Thalassia hemprichii) from the Great Barrier Reef (QLD, Australia) were thus collected, and their preliminary antioxidant and anti-inflammatory activities were evaluated. From the acetone extracts of five seagrass species subjected to 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging antioxidant assay, the extract of Z. muelleri had the highest activity (half minimal concentration of inhibition (IC50) = 138 µg/mL), with the aerial parts (IC50 = 119 µg/mL) possessing significantly higher antioxidant activity than the roots (IC50 ≥ 500 µg/mL). A human peripheral blood mononuclear cells (PBMCs) assay with bacterial lipopolysaccharide (LPS) activation and LEGENDplex cytokine analysis showed that the aerial extract of Z. muelleri significantly reduced the levels of inflammatory cytokines tumour necrosis factor alpha (TNF-α), interleukin (IL)-1ß, and IL-6 by 29%, 74%, and 90%, respectively, relative to the LPS treatment group. The aerial extract was thus fractionated with methanol (MeOH) and hexane fraction, and purification of the MeOH fraction by HPLC led to the isolation of 4-hydroxybenzoic acid (1), luteolin (2), and apigenin (3) as its major constituents. These compounds have been previously shown to reduce levels of TNF-α, IL-1ß, and IL-6 and represent some of the major bioactive components of Z. muelleri aerial parts. This investigation represents the first study of the antioxidant and anti-inflammatory properties of Z. muelleri and the first isolation of small molecules from this species. These results highlight the potential for using seagrasses in treating inflammation and the need for further investigation.

2.
Mar Environ Res ; 162: 105183, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33065522

RESUMO

The Great Barrier Reef (GBR) contains extensive seagrass meadows with abundant and diverse herbivore populations. Typically, meadows in the region are multi-species and dominated by fast growing opportunistic seagrass species. However, we know little about how herbivores modify these types of seagrass meadows by grazing. We conducted the first megaherbivore exclusion study in the GBR at Green Island (Queensland) to understand how green turtle grazing structures these multi-species tropical seagrass meadows. After excluding green turtles for three months, we found that grazing only impacted seagrasses at one site, where green turtles created a grazing plot by actively feeding on both above and below ground seagrass structures, a rare observation for the species. Within this grazing plot at the end of the experiment, the un-caged control treatments open to grazing had a 60% reduction in both above and below ground biomass, and shoot height was reduced by 75%, but there was no impact of grazing on the seagrass species mix. Our study shows that grazing plot formation by green turtles occurs in GBR fast growing seagrass communities and reduces both above and below ground seagrass biomass, this behaviour may be targeting elevated leaf nutrients, or nutritional content of rhizomes. This study is the first documented case of grazing plot formation by green turtles in the GBR and suggests that grazing pressure has a major influence on seagrass meadow structure.


Assuntos
Tartarugas , Animais , Biomassa , Herbivoria , Queensland
3.
Front Plant Sci ; 9: 127, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29487606

RESUMO

Seagrass meadows support key ecosystem services, via provision of food directly for herbivores, and indirectly to their predators. The importance of herbivores in seagrass meadows has been well-documented, but the links between food webs and ecosystem services in seagrass meadows have not previously been made explicit. Herbivores interact with ecosystem services - including carbon sequestration, cultural values, and coastal protection. Interactions can be positive or negative and depend on a range of factors including the herbivore identity and the grazing type and intensity. There can be unintended consequences from management actions based on a poor understanding of trade-offs that occur with complex seagrass-herbivore interactions. Tropical seagrass meadows support a diversity of grazers spanning the meso-, macro-, and megaherbivore scales. We present a conceptual model to describe how multiple ecosystem services are influenced by herbivore pressure in tropical seagrass meadows. Our model suggests that a balanced ecosystem, incorporating both seagrass and herbivore diversity, is likely to sustain the broadest range of ecosystem services. Our framework suggests the pathway to achieve desired ecosystem services outcomes requires knowledge on four key areas: (1) how size classes of herbivores interact to structure seagrass; (2) desired community and management values; (3) seagrass responses to top-down and bottom-up controls; (4) the pathway from intermediate to final ecosystem services and human benefits. We suggest research should be directed to these areas. Herbivory is a major structuring influence in tropical seagrass systems and needs to be considered for effective management of these critical habitats and their services.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA