Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 228(Suppl 7): S617-S625, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37477943

RESUMO

Ebola virus (EBOV)-Makona infected more than 30 000 people from 2013 to 2016 in West Africa, among them many health care workers including foreign nationals. Most of the infected foreign nationals were evacuated and treated in their respective home countries, resulting in detailed reports of the acute disease following EBOV infection as well as descriptions of symptoms now known as post-Ebola syndrome, which occurred months after the infection. Symptoms associated with this syndrome include uveitis and neurological manifestations. In 1 of our EBOV-Makona nonhuman primate (NHP) studies, 1 NHP was euthanized on day 28 after infection having completely recovered from the acute disease. During convalescence, this NHP developed neurological signs and acute respiratory distress requiring euthanasia. The organ tropism had changed with high virus titers in lungs, brain, eye, and reproductive organs but no virus in the typical target organs for acute EBOV infection. This in part reflects sequelae described for EBOV survivors albeit developing quicker after recovery from acute disease.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Humanos , Macaca mulatta , Doença Aguda , Progressão da Doença
2.
J Infect Dis ; 228(Suppl 7): S626-S630, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37386692

RESUMO

Ocular complications of Ebola virus disease are well-documented and long-term sequelae in survivors are common and lead to considerable morbidity. However, little is currently known regarding EBOV's tropism and replication kinetics within the eye. To date, limited studies have utilized in vitro infections of ocular cell lines and analyses of archived pathology samples to investigate these issues. Here, we employed ex vivo cultures of cynomolgus macaque eyes to determine the tropism of EBOV in 7 different ocular tissues: cornea, anterior sclera with bulbar conjunctiva, ciliary body, iris, lens, neural retina, and retina pigment epithelium. We report that, except for neural retina, all tissues supported EBOV replication. Retina pigment epithelium produced the fastest growth and highest viral RNA loads, although the differences were not statistically significant. Immunohistochemical staining confirmed and further characterized infection. This study demonstrates that EBOV has a broad tropism within the eye.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Córnea/patologia , Macaca fascicularis , Tropismo
3.
EBioMedicine ; 87: 104405, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36508878

RESUMO

BACKGROUND: Nipah virus (NiV) causes recurrent outbreaks of lethal respiratory and neurological disease in Southeast Asia. The World Health Organization considers the development of an effective vaccine against NiV a priority. METHODS: We produced two NiV vaccine candidates using the licensed VSV-EBOV vaccine as a backbone and tested its efficacy against lethal homologous and heterologous NiV challenge with Nipah virus Bangladesh and Nipah virus Malaysia, respectively, in the African green monkey model. FINDINGS: The VSV-EBOV vaccine expressing NiV glycoprotein G (VSV-NiVG) induced high neutralising antibody titers and afforded complete protection from homologous and heterologous challenge. The VSV-EBOV vaccine expressing NiV fusion protein F (VSV-NiVF) induced a lower humoral response and afforded complete homologous protection, but only partial heterologous protection. Both vaccines reduced virus shedding from the upper respiratory tract, and virus replication in the lungs and central nervous system. None of the protected animals vaccinated with VSV-NiVG or VSV-NiVF showed histological lesions in the CNS, but one VSV-NiVF-vaccinated animal that was not protected developed severe meningoencephalitis. INTERPRETATION: The VSV-NiVG vaccine offers broad protection against NiV disease. FUNDING: This study was supported by the Intramural Research Program, NIAID, NIH.


Assuntos
Vírus Nipah , Vacinas Virais , Animais , Chlorocebus aethiops , Vírus Nipah/genética , Vacinas Virais/genética , Replicação Viral , Primatas , Bangladesh
4.
PNAS Nexus ; 1(3): pgac114, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35967978

RESUMO

Little is known about the temporal patterns of infection and transmission of Lassa virus (LASV) within its natural reservoir (Mastomys natalensis). Here, we characterize infection dynamics and transmissibility of a LASV isolate (Soromba-R) in adult lab-reared M. natalensis originating from Mali. The lab-reared M. natalenesis proved to be highly susceptible to LASV isolates from geographically distinct regions of West Africa via multiple routes of exposure, with 50% infectious doses of < 1 TCID50. Postinoculation, LASV Soromba-R established a systemic infection with no signs of clinical disease. Viral RNA was detected in all nine tissues examined with peak concentrations detected between days 7 and 14 postinfection within most organs. There was an overall trend toward clearance of virus within 40 days of infection in most organs. The exception is lung specimens, which retained positivity throughout the course of the 85-day study. Direct (contact) and indirect (fomite) transmission experiments demonstrated 40% of experimentally infected M. natalensis were capable of transmitting LASV to naïve animals, with peak transmissibility occurring between 28 and 42 days post-inoculation. No differences in patterns of infection or transmission were noted between male and female experimentally infected rodents. Adult lab-reared M. natalensis are highly susceptible to genetically distinct LASV strains developing a temporary asymptomatic infection associated with virus shedding resulting in contact and fomite transmission within a cohort.

5.
Microbiol Spectr ; 10(2): e0271621, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35389241

RESUMO

Staphylococcus aureus remains a leading cause of skin and soft tissue infections (SSTIs) globally. In the United States, many of these infections are caused by isolates classified as USA300. Our understanding of the success of USA300 as a human pathogen is due in part to data obtained from animal infection models, including rabbit SSTI models. These animal models have been used to study S. aureus virulence and pathogenesis and to gain an enhanced understanding of the host response to infection. Although significant knowledge has been gained, the need to use a relatively high inoculum of USA300 (1 × 108 to 5 × 108 CFU) is a caveat of these infection models. As a step toward addressing this issue, we created mutations in USA300 that mimic those found in S. aureus strains with naturally occurring rabbit tropism-namely, single nucleotide polymorphisms in dltB and/or deletion of rot. We then developed a rabbit SSTI model that utilizes an inoculum of 106 USA300 CFU to cause reproducible disease and tested whether primary SSTI protects rabbits against severe reinfection caused by the same strain. Although there was modest protection against severe reinfection, primary infection and reinfection with rabbit-tropic USA300 strains failed to increase the overall level of circulating anti-S. aureus antibodies significantly. These findings provide additional insight into the host response to S. aureus. More work is needed to further develop a low-inoculum infection model that can be used to better test the potential of new therapeutics or vaccine target antigens. IMPORTANCE Animal models of S. aureus infection are important for evaluating bacterial pathogenesis and host immune responses. These animal infection models are often used as an initial step in the testing of vaccine antigens and new therapeutics. The extent to which animal models of S. aureus infection approximate human infections remains a significant consideration for translation of results to human clinical trials. Although significant progress has been made with rabbit models of S. aureus infection, one concern is the high inoculum needed to cause reproducible disease. Here, we generated USA300 strains that have tropism for rabbits and developed a rabbit SSTI model that uses fewer CFU than previous models.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções dos Tecidos Moles , Infecções Estafilocócicas , Infecções Cutâneas Estafilocócicas , Vacinas , Animais , Staphylococcus aureus Resistente à Meticilina/genética , Coelhos , Reinfecção , Infecções Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus aureus , Estados Unidos
6.
PLoS Pathog ; 17(12): e1009678, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34855915

RESUMO

Kyasanur Forest disease virus (KFDV) and the closely related Alkhurma hemorrhagic disease virus (AHFV) are emerging flaviviruses that cause severe viral hemorrhagic fevers in humans. Increasing geographical expansion and case numbers, particularly of KFDV in southwest India, class these viruses as a public health threat. Viral pathogenesis is not well understood and additional vaccines and antivirals are needed to effectively counter the impact of these viruses. However, current animal models of KFDV pathogenesis do not accurately reproduce viral tissue tropism or clinical outcomes observed in humans. Here, we show that pigtailed macaques (Macaca nemestrina) infected with KFDV or AHFV develop viremia that peaks 2 to 4 days following inoculation. Over the course of infection, animals developed lymphocytopenia, thrombocytopenia, and elevated liver enzymes. Infected animals exhibited hallmark signs of human disease characterized by a flushed appearance, piloerection, dehydration, loss of appetite, weakness, and hemorrhagic signs including epistaxis. Virus was commonly present in the gastrointestinal tract, consistent with human disease caused by KFDV and AHFV where gastrointestinal symptoms (hemorrhage, vomiting, diarrhea) are common. Importantly, RNAseq of whole blood revealed that KFDV downregulated gene expression of key clotting factors that was not observed during AHFV infection, consistent with increased severity of KFDV disease observed in this model. This work characterizes a nonhuman primate model for KFDV and AHFV that closely resembles human disease for further utilization in understanding host immunity and development of antiviral countermeasures.


Assuntos
Modelos Animais de Doenças , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Encefalite Transmitida por Carrapatos/virologia , Febres Hemorrágicas Virais/virologia , Macaca nemestrina , Animais , Chlorocebus aethiops , Citocinas/sangue , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/patologia , Feminino , Células HEK293 , Febres Hemorrágicas Virais/imunologia , Febres Hemorrágicas Virais/patologia , Humanos , Linfonodos/virologia , Células Vero , Viremia
7.
PLoS Pathog ; 17(10): e1009966, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34634087

RESUMO

Nigeria continues to experience ever increasing annual outbreaks of Lassa fever (LF). The World Health Organization has recently declared Lassa virus (LASV) as a priority pathogen for accelerated research leading to a renewed international effort to develop relevant animal models of disease and effective countermeasures to reduce LF morbidity and mortality in endemic West African countries. A limiting factor in evaluating medical countermeasures against LF is a lack of well characterized animal models outside of those based on infection with LASV strain Josiah originating form Sierra Leone, circa 1976. Here we genetically characterize five recent LASV isolates collected from the 2018 outbreak in Nigeria. Three isolates were further evaluated in vivo and despite being closely related and from the same spatial / geographic region of Nigeria, only one of the three isolates proved lethal in strain 13 guinea pigs and non-human primates (NHP). Additionally, this isolate exhibited atypical pathogenesis characteristics in the NHP model, most notably respiratory failure, not commonly described in hemorrhagic cases of LF. These results suggest that there is considerable phenotypic heterogeneity in LASV infections in Nigeria, which leads to a multitude of pathogenesis characteristics that could account for differences between subclinical and lethal LF infections. Most importantly, the development of disease models using currently circulating LASV strains in West Africa are critical for the evaluation of potential vaccines and medical countermeasures.


Assuntos
Modelos Animais de Doenças , Febre Lassa/genética , Vírus Lassa/genética , Animais , Surtos de Doenças , Feminino , Cobaias , Humanos , Macaca fascicularis , Masculino , Nigéria , Filogenia
8.
Cells ; 10(6)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070626

RESUMO

Nipah virus (NiV) is a highly pathogenic zoonotic virus with a broad species tropism, originating in pteropid bats. Human outbreaks of NiV disease occur almost annually, often with high case-fatality rates. The specific events that lead to pathogenesis are not well defined, but the disease has both respiratory and encephalitic components, with relapsing encephalitis occurring in some cases more than a year after initial infection. Several cell types are targets of NiV, dictated by the expression of the ephrin-B2/3 ligand on the cell's outer membrane, which interact with the NiV surface proteins. Vascular endothelial cells (ECs) are major targets of infection. Cytopathic effects (CPE), characterized by syncytia formation and cell death, and an ensuing vasculitis, are a major feature of the disease. Smooth muscle cells (SMCs) of the tunica media that line small blood vessels are infected in humans and animal models of NiV disease, although pathology or histologic changes associated with antigen-positive SMCs have not been reported. To gain an understanding of the possible contributions that SMCs might have in the development of NiV disease, we investigated the susceptibility and potential cytopathogenic changes of human SMCs to NiV infection in vitro. SMCs were permissive for NiV infection and resulted in high titers and prolonged NiV production, despite a lack of cytopathogenicity, and in the absence of detectable ephrin-B2/3. These results indicate that SMC might be important contributors to disease by producing progeny NiV during an infection, without suffering cytopathogenic consequences.


Assuntos
Células Endoteliais , Infecções por Henipavirus , Miócitos de Músculo Liso , Animais , Chlorocebus aethiops , Suscetibilidade a Doenças , Células Endoteliais/imunologia , Células Endoteliais/virologia , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/virologia , Humanos , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/virologia , Vírus Nipah , Células Vero , Replicação Viral
9.
Viruses ; 13(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807214

RESUMO

Mastomys natalensis are a ubiquitous and often dominant rodent across sub-Saharan Africa. Importantly, they are a natural reservoir for microbial pathogens including Lassa virus (LASV), the etiological agent of Lassa fever in humans. Lassa-infected rodents have been documented across West Africa and coincide with regions where annual outbreaks occur. Zoonotic transmission to humans most often occurs directly from infected rodents. Little is known about LASV infection kinetics and transmissibility in M.natalensis, primarily due to available animals. Here, we describe the establishment of a laboratory breeding colony of genetically confirmed M.natalensis from wild-captured rodents. This colony will provide a convenient source of animals to study LASV and other emerging pathogens that utilize M. natalensis in their enzootic lifecycles.


Assuntos
Animais Selvagens/genética , Murinae/genética , Seleção Artificial , África Ocidental , Animais , Animais Selvagens/virologia , Feminino , Febre Lassa/transmissão , Vírus Lassa/patogenicidade , Masculino , Modelos Animais , Murinae/fisiologia , Murinae/virologia
10.
JCI Insight ; 6(10)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33886507

RESUMO

Emerging coronaviruses from zoonotic reservoirs, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have been associated with human-to-human transmission and significant morbidity and mortality. Here, we study both intradermal and intramuscular 2-dose delivery regimens of an advanced synthetic DNA vaccine candidate encoding a full-length MERS-CoV spike (S) protein, which induced potent binding and neutralizing antibodies as well as cellular immune responses in rhesus macaques. In a MERS-CoV challenge, all immunized rhesus macaques exhibited reduced clinical symptoms, lowered viral lung load, and decreased severity of pathological signs of disease compared with controls. Intradermal vaccination was dose sparing and more effective in this model at protecting animals from disease. The data support the further study of this vaccine for preventing MERS-CoV infection and transmission, including investigation of such vaccines and simplified delivery routes against emerging coronaviruses.


Assuntos
Infecções por Coronavirus/veterinária , Macaca mulatta/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Vacinas de DNA/uso terapêutico , Vacinas Virais/uso terapêutico , Animais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Imunogenicidade da Vacina , Injeções Intradérmicas , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
11.
Cell Rep Med ; 2(4): 100230, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33754147

RESUMO

The deployment of a vaccine that limits transmission and disease likely will be required to end the coronavirus disease 2019 (COVID-19) pandemic. We recently described the protective activity of an intranasally administered chimpanzee adenovirus-vectored vaccine encoding a pre-fusion stabilized spike (S) protein (ChAd-SARS-CoV-2-S [chimpanzee adenovirus-severe acute respiratory syndrome-coronavirus-2-S]) in the upper and lower respiratory tracts of mice expressing the human angiotensin-converting enzyme 2 (ACE2) receptor. Here, we show the immunogenicity and protective efficacy of this vaccine in non-human primates. Rhesus macaques were immunized with ChAd-Control or ChAd-SARS-CoV-2-S and challenged 1 month later by combined intranasal and intrabronchial routes with SARS-CoV-2. A single intranasal dose of ChAd-SARS-CoV-2-S induces neutralizing antibodies and T cell responses and limits or prevents infection in the upper and lower respiratory tracts after SARS-CoV-2 challenge. As ChAd-SARS-CoV-2-S confers protection in non-human primates, it is a promising candidate for limiting SARS-CoV-2 infection and transmission in humans.

12.
bioRxiv ; 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33532770

RESUMO

The deployment of a vaccine that limits transmission and disease likely will be required to end the Coronavirus Disease 2019 (COVID-19) pandemic. We recently described the protective activity of an intranasally-administered chimpanzee adenovirus-vectored vaccine encoding a pre-fusion stabilized spike (S) protein (ChAd-SARS-CoV-2-S) in the upper and lower respiratory tract of mice expressing the human angiotensin-converting enzyme 2 (ACE2) receptor. Here, we show the immunogenicity and protective efficacy of this vaccine in non-human primates. Rhesus macaques were immunized with ChAd-Control or ChAd-SARS-CoV-2-S and challenged one month later by combined intranasal and intrabronchial routes with SARS-CoV-2. A single intranasal dose of ChAd-SARS-CoV-2-S induced neutralizing antibodies and T cell responses and limited or prevented infection in the upper and lower respiratory tract after SARS-CoV-2 challenge. As this single intranasal dose vaccine confers protection against SARS-CoV-2 in non-human primates, it is a promising candidate for limiting SARS-CoV-2 infection and transmission in humans.

13.
mBio ; 12(1)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622728

RESUMO

Severe infections caused by multidrug-resistant Klebsiella pneumoniae sequence type 258 (ST258) highlight the need for new therapeutics with activity against this pathogen. Bacteriophage (phage) therapy is an alternative treatment approach for multidrug-resistant bacterial infections that has shown efficacy in experimental animal models and promise in clinical case reports. In this study, we assessed microbiologic, histopathologic, and survival outcomes following systemic administration of phage in ST258-infected mice. We found that prompt treatment with two phages, either individually or in combination, rescued mice with K. pneumoniae ST258 bacteremia. Among the three treatment groups, mice that received combination phage therapy demonstrated the greatest increase in survival and the lowest frequency of phage resistance among bacteria recovered from mouse blood and tissue. Our findings support the utility of phage therapy as an approach for refractory ST258 infections and underscore the potential of this treatment modality to be enhanced through strategic phage selection.IMPORTANCE Infections caused by multidrug-resistant K. pneumoniae pose a serious threat to at-risk patients and present a therapeutic challenge for clinicians. Bacteriophage (phage) therapy is an alternative treatment approach that has been associated with positive clinical outcomes when administered experimentally to patients with refractory bacterial infections. Inasmuch as these experimental treatments are prepared for individual patients and authorized for compassionate use only, they lack the rigor of a clinical trial and therefore cannot provide proof of efficacy. Here, we demonstrate that administration of viable phage provides effective treatment for multidrug-resistant K. pneumoniae (sequence type 258 [ST258]) bacteremia in a murine infection model. Moreover, we compare outcomes among three distinct phage treatment groups and identify potential correlates of therapeutic phage efficacy. These findings constitute an important first step toward optimizing and assessing phage therapy's potential for the treatment of severe ST258 infection in humans.


Assuntos
Antibacterianos/uso terapêutico , Bacteriófagos/fisiologia , Infecções por Klebsiella/terapia , Terapia por Fagos , Animais , Antibacterianos/farmacologia , Bacteriemia/terapia , Farmacorresistência Bacteriana Múltipla , Feminino , Infecções por Klebsiella/sangue , Klebsiella pneumoniae/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL
14.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33443221

RESUMO

Reston virus (RESTV), an ebolavirus, causes clinical disease in macaques but has yet only been associated with rare asymptomatic infections in humans. Its 2008 emergence in pigs in the Philippines raised concerns about food safety, pathogenicity, and zoonotic potential, questions that are still unanswered. Until today, the virulence of RESTV for pigs has remained elusive, with unclear pathogenicity in naturally infected animals and only one experimental study demonstrating susceptibility and evidence for shedding but no disease. Here we show that combined oropharyngeal and nasal infection of young (3- to 7-wk-old) Yorkshire cross pigs with RESTV resulted in severe respiratory disease, with most animals reaching humane endpoint within a week. RESTV-infected pigs developed severe cyanosis, tachypnea, and acute interstitial pneumonia, with RESTV shedding from oronasal mucosal membranes. Our studies indicate that RESTV should be considered a livestock pathogen with zoonotic potential.


Assuntos
Ebolavirus/imunologia , Insuficiência Respiratória/virologia , Doenças dos Suínos/virologia , Animais , Anticorpos Antivirais/imunologia , Causalidade , Vírus de DNA/patogenicidade , Surtos de Doenças/prevenção & controle , Ebolavirus/metabolismo , Ebolavirus/patogenicidade , Filipinas/epidemiologia , Insuficiência Respiratória/veterinária , Sus scrofa/virologia , Suínos/virologia , Doenças dos Suínos/epidemiologia , Eliminação de Partículas Virais/imunologia
15.
PLoS Pathog ; 16(12): e1009092, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33284863

RESUMO

Yersinia pestis can be transmitted by fleas during the first week after an infectious blood meal, termed early-phase or mass transmission, and again after Y. pestis forms a cohesive biofilm in the flea foregut that blocks normal blood feeding. We compared the transmission efficiency and the progression of infection after transmission by Oropsylla montana fleas at both stages. Fleas were allowed to feed on mice three days after an infectious blood meal to evaluate early-phase transmission, or after they had developed complete proventricular blockage. Transmission was variable and rather inefficient by both modes, and the odds of early-phase transmission was positively associated with the number of infected fleas that fed. Disease progression in individual mice bitten by fleas infected with a bioluminescent strain of Y. pestis was tracked. An early prominent focus of infection at the intradermal flea bite site and dissemination to the draining lymph node(s) soon thereafter were common features, but unlike what has been observed in intradermal injection models, this did not invariably lead to further systemic spread and terminal disease. Several of these mice resolved the infection without progression to terminal sepsis and developed an immune response to Y. pestis, particularly those that received an intermediate number of early-phase flea bites. Furthermore, two distinct types of terminal disease were noted: the stereotypical rapid onset terminal disease within four days, or a prolonged onset preceded by an extended, fluctuating infection of the lymph nodes before eventual systemic dissemination. For both modes of transmission, bubonic plague rather than primary septicemic plague was the predominant disease outcome. The results will help to inform mathematical models of flea-borne plague dynamics used to predict the relative contribution of the two transmission modes to epizootic outbreaks that erupt periodically from the normal enzootic background state.


Assuntos
Peste/transmissão , Sifonápteros/fisiologia , Yersinia pestis/metabolismo , Animais , Biofilmes/crescimento & desenvolvimento , Surtos de Doenças , Progressão da Doença , Feminino , Insetos Vetores/fisiologia , Camundongos , Sifonápteros/metabolismo , Sifonápteros/microbiologia , Yersinia pestis/patogenicidade
16.
PLoS Negl Trop Dis ; 14(10): e0008683, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33017410

RESUMO

Infected Ixodes scapularis (black-legged tick) transmit a host of serious pathogens via their bites, including Borrelia burgdorferi, Babesia microti, and tick-borne flaviviruses (TBFVs), such as Powassan virus (POWV). Although the role of female I. scapularis ticks in disease transmission is well characterized, the role of male ticks is poorly understood. Because the pathogens are delivered in tick saliva, we studied the capacity of male salivary glands (SGs) to support virus replication. Ex vivo cultures of SGs from unfed male I. scapularis were viable for more than a week and maintained the characteristic tissue architecture of lobular ducts and acini. When SG cultures were infected with the TBFVs Langat virus (LGTV) or POWV lineage II (deer tick virus), the production of infectious virus was demonstrated. Using a green fluorescent protein-tagged LGTV and confocal microscopy, we demonstrated LGTV infection within SG acinus types II and III. The presence of LGTV in the acini and lobular ducts of the cultures was also shown via immunohistochemistry. Furthermore, the identification by in situ hybridization of both positive and negative strand LGTV RNA confirmed that the virus was indeed replicating. Finally, transmission electron microscopy of infected SGs revealed virus particles packaged in vesicles or vacuoles adjacent to acinar lumina. These studies support the concept that SGs of male I. scapularis ticks support replication of TBFVs and may play a role in virus transmission, and further refine a useful model system for developing countermeasures against this important group of pathogens.


Assuntos
Infecções por Flavivirus/veterinária , Ixodes/virologia , Glândulas Salivares/virologia , Animais , Vírus da Encefalite Transmitidos por Carrapatos/crescimento & desenvolvimento , Infecções por Flavivirus/virologia , Masculino , Microscopia , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência
17.
bioRxiv ; 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32511319

RESUMO

Background: Effective therapeutics to treat COVID-19 are urgently needed. Remdesivir is a nucleotide prodrug with in vitro and in vivo efficacy against coronaviruses. Here, we tested the efficacy of remdesivir treatment in a rhesus macaque model of SARS-CoV-2 infection. Methods: To evaluate the effect of remdesivir treatment on SARS-CoV-2 disease outcome, we used the recently established rhesus macaque model of SARS-CoV-2 infection that results in transient lower respiratory tract disease. Two groups of six rhesus macaques were infected with SARS-CoV-2 and treated with intravenous remdesivir or an equal volume of vehicle solution once daily. Clinical, virological and histological parameters were assessed regularly during the study and at necropsy to determine treatment efficacy. Results: In contrast to vehicle-treated animals, animals treated with remdesivir did not show signs of respiratory disease and had reduced pulmonary infiltrates on radiographs. Virus titers in bronchoalveolar lavages were significantly reduced as early as 12hrs after the first treatment was administered. At necropsy on day 7 after inoculation, lung viral loads of remdesivir-treated animals were significantly lower and there was a clear reduction in damage to the lung tissue. Conclusions: Therapeutic remdesivir treatment initiated early during infection has a clear clinical benefit in SARS-CoV-2-infected rhesus macaques. These data support early remdesivir treatment initiation in COVID-19 patients to prevent progression to severe pneumonia.

18.
Nature ; 585(7824): 273-276, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32516797

RESUMO

Effective therapies to treat coronavirus disease 2019 (COVID-19) are urgently needed. While many investigational, approved, and repurposed drugs have been suggested as potential treatments, preclinical data from animal models can guide the search for effective treatments by ruling out those that lack efficacy in vivo. Remdesivir (GS-5734) is a nucleotide analogue prodrug with broad antiviral activity1,2 that is currently being investigated in COVID-19 clinical trials and recently received Emergency Use Authorization from the US Food and Drug Administration3,4. In animal models, remdesivir was effective against infection with Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV)2,5,6. In vitro, remdesivir inhibited replication of SARS-CoV-27,8. Here we investigate the efficacy of remdesivir in a rhesus macaque model of SARS-CoV-2 infection9. Unlike vehicle-treated animals, macaques treated with remdesivir did not show signs of respiratory disease; they also showed reduced pulmonary infiltrates on radiographs and reduced virus titres in bronchoalveolar lavages twelve hours after the first dose. Virus shedding from the upper respiratory tract was not reduced by remdesivir treatment. At necropsy, remdesivir-treated animals had lower lung viral loads and reduced lung damage. Thus, treatment with remdesivir initiated early during infection had a clinical benefit in rhesus macaques infected with SARS-CoV-2. Although the rhesus macaque model does not represent the severe disease observed in some patients with COVID-19, our data support the early initiation of remdesivir treatment in patients with COVID-19 to prevent progression to pneumonia.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Macaca mulatta/virologia , Pneumonia Viral/prevenção & controle , Monofosfato de Adenosina/farmacocinética , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/farmacocinética , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Betacoronavirus/genética , Betacoronavirus/patogenicidade , Líquido da Lavagem Broncoalveolar/virologia , COVID-19 , Infecções por Coronavirus/patologia , Infecções por Coronavirus/fisiopatologia , Análise Mutacional de DNA , Progressão da Doença , Farmacorresistência Viral , Feminino , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Pulmão/virologia , Masculino , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/patologia , Pneumonia Viral/fisiopatologia , Pneumonia Viral/virologia , SARS-CoV-2 , Prevenção Secundária , Fatores de Tempo , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Eliminação de Partículas Virais/efeitos dos fármacos
19.
mBio ; 10(6)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848292

RESUMO

Klebsiella pneumoniae is a human gut communal organism and notorious opportunistic pathogen. The relative high burden of asymptomatic colonization by K. pneumoniae is often compounded by multidrug resistance-a potential problem for individuals with significant comorbidities or other risk factors for infection. A carbapenem-resistant K. pneumoniae strain classified as multilocus sequence type 258 (ST258) is widespread in the United States and is usually multidrug resistant. Thus, treatment of ST258 infections is often difficult. Inasmuch as new preventive and/or therapeutic measures are needed for treatment of such infections, we developed an ST258 pneumonia model in cynomolgus macaques and tested the ability of an ST258 capsule polysaccharide type 2 (CPS2) vaccine to moderate disease severity. Compared with sham-vaccinated animals, those vaccinated with ST258 CPS2 had significantly less disease as assessed by radiography 24 h after intrabronchial installation of 108 CFU of ST258. All macaques vaccinated with CPS2 ultimately developed ST258-specific antibodies that significantly enhanced serum bactericidal activity and killing of ST258 by macaque neutrophils ex vivo Consistent with a protective immune response to CPS2, transcripts encoding inflammatory mediators were increased in infected lung tissues obtained from CPS-vaccinated animals compared with control, sham-vaccinated macaques. Taken together, our data provide support for the idea that vaccination with ST258 CPS can be used to prevent or moderate infections caused by ST258. As with studies performed decades earlier, we propose that this prime-boost vaccination approach can be extended to include multiple capsule types.IMPORTANCE Multidrug-resistant bacteria continue to be a major problem worldwide, especially among individuals with significant comorbidities and other risk factors for infection. K. pneumoniae is among the leading causes of health care-associated infections, and the organism is often resistant to multiple classes of antibiotics. A carbapenem-resistant K. pneumoniae strain known as multilocus sequence type 258 (ST258) is the predominant carbapenem-resistant Enterobacteriaceae in the health care setting in the United States. Infections caused by ST258 are often difficult to treat and new prophylactic measures and therapeutic approaches are needed. To that end, we developed a lower respiratory tract infection model in cynomolgus macaques in which to test the ability of ST258 CPS to protect against severe ST258 infection.


Assuntos
Vacinas Bacterianas/imunologia , Farmacorresistência Bacteriana Múltipla , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/imunologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/prevenção & controle , Animais , Biópsia , Imunização , Infecções por Klebsiella/diagnóstico , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/prevenção & controle , Primatas , Radiografia , Infecções Respiratórias/diagnóstico , Transcriptoma , Vacinação
20.
EBioMedicine ; 49: 223-231, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31631035

RESUMO

BACKGROUND: Ebola virus (EBOV), variant Makona, was the causative agent of the 2013-2016 West African epidemic responsible for almost 30,000 human infections and over 11,000 fatalities. During the epidemic, the development of several experimental vaccines was accelerated through human clinical trials. One of them, the vesicular stomatitis virus (VSV)-based vaccine VSV-EBOV, showed promising efficacy in a phase 3 clinical trial in Guinea and is currently used in the ongoing EBOV outbreak in the northeastern part of the Democratic Republic of the Congo (DRC). This vaccine expresses the EBOV-Kikwit glycoprotein from the 1995 outbreak as the immunogen. METHODS: Here we generated a VSV-based vaccine expressing the contemporary EBOV-Makona glycoprotein. We characterized the vaccine in tissue culture and analyzed vaccine efficacy in the cynomolgus macaque model. Subsequently, we determined the dose-dependent protective efficacy in nonhuman primates against lethal EBOV challenge. FINDINGS: We observed complete protection from disease with VSV-EBOV doses ranging from 1 × 107 to 1 × 101 plaque-forming units. Some protected animals receiving lower vaccine doses developed temporary low-level EBOV viremia. Control animals developed classical EBOV disease and reached euthanasia criteria within a week after challenge. This study demonstrates that very low doses of VSV-EBOV uniformly protect macaques against lethal EBOV challenge. INTERPRETATION: Our study provides missing pre-clinical data supporting the use of reduced VSV-EBOV vaccine doses without decreasing protective efficacy and at the same time increase vaccine safety and availability - two critical concerns in public health response. FUNDING: Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health.


Assuntos
Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Vacinação , Vesiculovirus/imunologia , Animais , Citocinas/metabolismo , Relação Dose-Resposta Imunológica , Feminino , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/virologia , Imunidade Humoral , Macaca fascicularis , Masculino , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA