Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1203: 33-81, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31811630

RESUMO

The process of creating a translation-competent mRNA is highly complex and involves numerous steps including transcription, splicing, addition of modifications, and, finally, export to the cytoplasm. Historically, much of the research on regulation of gene expression at the level of the mRNA has been focused on either the regulation of mRNA synthesis (transcription and splicing) or metabolism (translation and degradation). However, in recent years, the advent of new experimental techniques has revealed the export of mRNA to be a major node in the regulation of gene expression, and numerous large-scale and specific mRNA export pathways have been defined. In this chapter, we will begin by outlining the mechanism by which most mRNAs are homeostatically exported ("bulk mRNA export"), involving the recruitment of the NXF1/TAP export receptor by the Aly/REF and THOC5 components of the TREX complex. We will then examine various mechanisms by which this pathway may be controlled, modified, or bypassed in order to promote the export of subset(s) of cellular mRNAs, which include the use of metazoan-specific orthologs of bulk mRNA export factors, specific cis RNA motifs which recruit mRNA export machinery via specific trans-acting-binding factors, posttranscriptional mRNA modifications that act as "inducible" export cis elements, the use of the atypical mRNA export receptor, CRM1, and the manipulation or bypass of the nuclear pore itself. Finally, we will discuss major outstanding questions in the field of mRNA export heterogeneity and outline how cutting-edge experimental techniques are providing new insights into and tools for investigating the intriguing field of mRNA export heterogeneity.


Assuntos
Transporte de RNA , RNA Mensageiro , Animais , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , RNA Mensageiro/metabolismo
2.
Nucleic Acids Res ; 45(21): 12509-12528, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29069457

RESUMO

To counteract the breakdown of genome integrity, eukaryotic cells have developed a network of surveillance pathways to prevent and resolve DNA damage. Recent data has recognized the importance of RNA binding proteins (RBPs) in DNA damage repair (DDR) pathways. Here, we describe Nol12 as a multifunctional RBP with roles in RNA metabolism and genome maintenance. Nol12 is found in different subcellular compartments-nucleoli, where it associates with ribosomal RNA and is required for efficient separation of large and small subunit precursors at site 2; the nucleoplasm, where it co-localizes with the RNA/DNA helicase Dhx9 and paraspeckles; as well as GW/P-bodies in the cytoplasm. Loss of Nol12 results in the inability of cells to recover from DNA stress and a rapid p53-independent ATR-Chk1-mediated apoptotic response. Nol12 co-localizes with DNA repair proteins in vivo including Dhx9, as well as with TOPBP1 at sites of replication stalls, suggesting a role for Nol12 in the resolution of DNA stress and maintenance of genome integrity. Identification of a complex Nol12 interactome, which includes NONO, Dhx9, DNA-PK and Stau1, further supports the protein's diverse functions in RNA metabolism and DNA maintenance, establishing Nol12 as a multifunctional RBP essential for genome integrity.


Assuntos
DNA/metabolismo , Proteínas Nucleares/metabolismo , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Reparo do DNA , Humanos , Proteínas Nucleares/química , Domínios Proteicos , Proteínas de Ligação a RNA/química
3.
Biochem Cell Biol ; 94(5): 419-432, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27673355

RESUMO

The nucleolus represents a highly multifunctional intranuclear organelle in which, in addition to the canonical ribosome assembly, numerous processes such as transcription, DNA repair and replication, the cell cycle, and apoptosis are coordinated. The nucleolus is further a key hub in the sensing of cellular stress and undergoes major structural and compositional changes in response to cellular perturbations. Numerous nucleolar proteins have been identified that, upon sensing nucleolar stress, deploy additional, non-ribosomal roles in the regulation of varied cell processes including cell cycle arrest, arrest of DNA replication, induction of DNA repair, and apoptosis, among others. The highly abundant proteins nucleophosmin (NPM1) and nucleolin (NCL) are two such factors that transit to the nucleoplasm in response to stress, and participate directly in the repair of numerous different DNA damages. This review discusses the contributions made by NCL and (or) NPM1 to the different DNA repair pathways employed by mammalian cells to repair DNA insults, and examines the implications of such activities for the regulation, pathogenesis, and therapeutic targeting of NPM1 and NCL.


Assuntos
Nucléolo Celular/metabolismo , Reparo do DNA , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Humanos , Nucleofosmina , Nucleolina
4.
Biochim Biophys Acta ; 1829(6-7): 654-65, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23385389

RESUMO

The post-transcriptional addition of non-templated nucleotides to the 3' ends of RNA molecules can have a profound impact on their stability and biological function. Evidence accumulated over the past few decades has identified roles for polyadenylation in RNA stabilisation, degradation and, in the case of eukaryotic mRNAs, translational competence. By contrast, the biological significance of RNA 3' modification by uridylation has only recently started to become apparent. The evolutionary origin of eukaryotic RNA terminal uridyltransferases can be traced to an ancestral poly(A) polymerase. Here we review what is currently known about the biological roles of these enzymes, the ways in which their activity is regulated and the consequences of this covalent modification for the target RNA molecule, with a focus on those instances where uridylation has been found to contribute to RNA degradation. Roles for uridylation have been identified in the turnover of mRNAs, pre-microRNAs, piwi-interacting RNAs and the products of microRNA-directed mRNA cleavage; many mature microRNAs are also modified by uridylation, though the consequences in this case are currently less well understood. In the case of piwi-interacting RNAs, modification of the 3'-terminal nucleotide by the HEN1 methyltransferase blocks uridylation and so stabilises the small RNA. The extent to which other uridylation-dependent mechanisms of RNA decay are similarly regulated awaits further investigation. This article is part of a Special Issue entitled: RNA Decay mechanisms.


Assuntos
MicroRNAs/genética , Nucleotidiltransferases , Estabilidade de RNA/genética , Uridina , Animais , Caenorhabditis elegans/genética , Eucariotos , Humanos , Nucleotidiltransferases/classificação , Nucleotidiltransferases/genética , Filogenia , Polinucleotídeo Adenililtransferase/classificação , Polinucleotídeo Adenililtransferase/genética , Uridina/química , Uridina/genética , Peixe-Zebra/genética
5.
Oral Maxillofac Surg Clin North Am ; 19(4): 513-21, vi, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18088902

RESUMO

The use of bone grafts in the repair of defects has a long history of success, primarily with the use of autologous bone. With increasing technologic advances, researchers have been able to broaden the spectrum of grafting materials to allografts, xenografts, and synthetic materials, which provide the surgeon and patient with options, each with unique advantages. It is with the knowledge of each material that the clinician can present and suggest the best material and tailor treatment plans to fit each individual. In this article, we present an overview of the principles of bone grafting, the types of graft materials available, and an outlook to what the future holds in this area of medicine and dentistry.


Assuntos
Doenças Ósseas/cirurgia , Substitutos Ósseos/uso terapêutico , Transplante Ósseo/métodos , Materiais Biocompatíveis/uso terapêutico , Humanos , Transplante Heterólogo , Transplante Homólogo
6.
Nucleic Acids Res ; 35(9): 2813-24, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17355988

RESUMO

The tau subunit of Escherichia coli DNA polymerase III holoenzyme interacts with the alpha subunit through its C-terminal Domain V, tau(C)16. We show that the extreme C-terminal region of tau(C)16 constitutes the site of interaction with alpha. The tau(C)16 domain, but not a derivative of it with a C-terminal deletion of seven residues (tau(C)16Delta7), forms an isolable complex with alpha. Surface plasmon resonance measurements were used to determine the dissociation constant (K(D)) of the alpha-tau(C)16 complex to be approximately 260 pM. Competition with immobilized tau(C)16 by tau(C)16 derivatives for binding to alpha gave values of K(D) of 7 muM for the alpha-tau(C)16Delta7 complex. Low-level expression of the genes encoding tau(C)16 and tau(C)16triangle up7, but not tau(C)16Delta11, is lethal to E. coli. Suppression of this lethal phenotype enabled selection of mutations in the 3' end of the tau(C)16 gene, that led to defects in alpha binding. The data suggest that the unstructured C-terminus of tau becomes folded into a helix-loop-helix in its complex with alpha. An N-terminally extended construct, tau(C)24, was found to bind DNA in a salt-sensitive manner while no binding was observed for tau(C)16, suggesting that the processivity switch of the replisome functionally involves Domain IV of tau.


Assuntos
DNA Polimerase III/metabolismo , Proteínas de Escherichia coli/química , Fatores de Transcrição/química , Sítios de Ligação , DNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutagênese , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ressonância de Plasmônio de Superfície , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...