Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychol ; 12: 788027, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002880

RESUMO

Increases in body temperature from heat stress (i.e., hyperthermia) generally impairs cognitive function across a range of domains and complexities, but the relative contribution from skin versus core temperature changes remains unclear. Hyperthermia also elicits a hyperventilatory response that decreases the partial pressure of end-tidal carbon dioxide (PetCO2) and subsequently cerebral blood flow that may influence cognitive function. We studied the role of skin and core temperature along with PetCO2 on cognitive function across a range of domains. Eleven males completed a randomized, single-blinded protocol consisting of poikilocapnia (POIKI, no PetCO2 control) or isocapnia (ISO, PetCO2 maintained at baseline levels) during passive heating using a water-perfused suit (water temperature ~ 49°C) while middle cerebral artery velocity (MCAv) was measured continuously as an index of cerebral blood flow. Cognitive testing was completed at baseline, neutral core-hot skin (37.0 ± 0.2°C-37.4 ± 0.3°C), hot core-hot skin (38.6 ± 0.3°C-38.7 ± 0.2°C), and hot core-cooled skin (38.5 ± 0.3°C-34.7 ± 0.6°C). The cognitive test battery consisted of a detection task (psychomotor processing), 2-back task (working memory), set-shifting and Groton Maze Learning Task (executive function). At hot core-hot skin, poikilocapnia led to significant (both p < 0.05) decreases in PetCO2 (∆-21%) and MCAv (∆-26%) from baseline, while isocapnia clamped PetCO2 (∆ + 4% from baseline) leading to a significantly (p = 0.023) higher MCAv (∆-18% from baseline) compared to poikilocapnia. There were no significant differences in errors made on any task (all p > 0.05) irrespective of skin temperature or PetCO2 manipulation. We conclude that neither skin temperature nor PetCO2 maintenance significantly alter cognitive function during passive hyperthermia.

2.
Appl Physiol Nutr Metab ; 46(5): 511-520, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33232172

RESUMO

Dopamine activity can modulate physical performance in the heat, but less is known about its effects on cognition during thermal stress. Twelves males completed a randomized, double-blinded protocol consisting of oral ingestion of 20 mg of methylphenidate (MPH) or placebo (lactose pill) during passive heating using a water-perfused suit (water temperature ∼49 °C). To identify the impact of peripheral versus central thermal strain, a cognitive test battery was completed at 4 different thermal states: baseline (BASE; 37.2 ± 0.6 °C core, 32.9 ± 0.7 °C skin), neutral core-hot skin (NC-HS; 37.2 ± 0.3 °C, 37.4 ± 0.3 °C), hyperthermic core-hot skin (HC-HS; 38.7 ± 0.4 °C, 38.7 ± 0.2 °C), and hyperthermic core-cooled skin (HC-CS; 38.5 ± 0.4 °C, 35.1 ± 0.8 °C). The cognitive test battery consisted of the 2-back task (i.e., working memory), set-shifting (i.e., executive function), Groton Maze Learning Task (i.e., executive function) and detection task (i.e., psychomotor processing). MPH led to significantly higher heart rates (∼5-15 b·min-1) at BASE, NC-HS, and HC-HS (all p < 0.05). There were no significant differences in the number of errors made on each task (all p < 0.05). Participants were significantly faster (p < 0.05) on the set-shifting task in the HC-HS timepoint, irrespective of drug condition (p > 0.05). In summary, we demonstrated that 20 mg of MPH did not significantly alter cognitive function during either normothermia or moderate hyperthermia. Novelty: Twenty milligrams of MPH did not significantly alter cognitive function during passive heat stress. MPH led to significant higher heart rates (∼5-15 b·min-1) in thermoneutral and during passive heat stress. Future studies are needed to determine the mechanisms of why MPH improves physical but not cognitive performance during heat stress.


Assuntos
Cognição/efeitos dos fármacos , Inibidores da Captação de Dopamina/administração & dosagem , Hipertermia/psicologia , Metilfenidato/administração & dosagem , Adulto , Pressão Sanguínea/efeitos dos fármacos , Índice de Massa Corporal , Método Duplo-Cego , Frequência Cardíaca/efeitos dos fármacos , Humanos , Hipertermia/fisiopatologia , Masculino , Ventilação Pulmonar , Volume de Ventilação Pulmonar , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA