Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 198: 105752, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225095

RESUMO

Insecticide resistance is both economically important and evolutionarily interesting phenomenon. Identification of the mutations responsible for resistance allows for highly sensitive resistance monitoring and allows tools to study the forces (population genetics, fitness costs, etc.) that shape the evolution of resistance. Genes coding for insecticide targets have many well-characterized mutations, but the mutations responsible for enhanced detoxification have proven difficult to identify. We employed multiple strategies to identify the mutations responsible for the extraordinarily high permethrin resistance in the KS17-R strain of house fly (Musca domestica): insecticide synergist assays, linkage analysis, bulk segregant analyses (BSA), transcriptomics and long read DNA (Nanopore) sequencing. The >85,100-fold resistance in KS17-R was partially suppressed by the insecticide synergists piperonyl butoxide and S,S,S-tributylphosphorothionate, but not by diethyl maleate nor by injection. This suggests the involvement of target site insensitivity, CYP-mediated resistance, possibly hydrolase mediated resistance and potentially other unknown factors. Linkage analysis identified chromosomes 1, 2, 3 and 5 as having a role in resistance. BSA mapped resistance loci on chromosomes 3 and 5. The locus on chromosome 3 was centered on the voltage sensitive sodium channel. The locus on chromosome 5 was associated with a duplication of multiple detoxification genes. Transcriptomic analyses and long read DNA sequencing revealed overexpressed CYPs and esterases and identified a complex set of structural variants at the chromosome 5 locus.


Assuntos
Moscas Domésticas , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Moscas Domésticas/genética , Permetrina , Resistência a Inseticidas/genética , Sistema Enzimático do Citocromo P-450 , Genômica , Piretrinas/farmacologia
2.
PLoS Negl Trop Dis ; 17(11): e0011741, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37910567

RESUMO

Aedes aegypti is the vector of viruses such as chikungunya, dengue, yellow fever and Zika that have a critical impact on human health. Control of adult mosquitoes is widely done using pyrethroids, but resistance has reduced the effectiveness of this class of insecticides. Resistance to pyrethroids in mosquitoes is commonly due to mutations in the voltage-gated sodium channel (Vgsc) gene (these mutations are known as knockdown resistance, kdr). In the Americas and the Caribbean, the most common kdr alleles are 410L+1016I+1534C and 1534C. In this study, we conducted a population cage experiment to evaluate changes in the allele and genotype frequencies of the 410L+1016I+1534C allele by crossing two congenic strains; one carrying the 410L+1016I+1534C and another with the 1534C allele. Changes in allele frequencies were measured over 10 generations in the absence of insecticide exposure. We also applied one cycle of selection with deltamethrin at F9 to evaluate the changes in allele and genotype frequencies. Our findings indicate that fitness costs were higher with the 410L+1016I+1534C allele, relative to the 1534C allele, in the absence of deltamethrin exposure, but that the 410L+1016I+1534C allele provides a stronger advantage when exposed to deltamethrin relative to the 1534C allele. Changes in genotype frequencies were not in Hardy-Weinberg equilibrium and could not be explained by drift. Our results suggest the diametrically opposed fitness costs in the presence and absence of insecticides is a reason for the variations in frequencies between the 410L+1016I+1534C and 1534C alleles in field populations.


Assuntos
Aedes , Inseticidas , Piretrinas , Infecção por Zika virus , Zika virus , Animais , Adulto , Humanos , Inseticidas/farmacologia , Aedes/genética , Alelos , Resistência a Inseticidas/genética , Mosquitos Vetores/genética , Piretrinas/farmacologia , Mutação , Zika virus/genética , Infecção por Zika virus/genética
3.
Arch Insect Biochem Physiol ; 114(3): e22049, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37608635

RESUMO

The house fly, Musca domestica, is a pest of livestock, transmits pathogens of human diseases, and is a model organism in multiple biological research areas. The first house fly genome assembly was published in 2014 and has been of tremendous use to the community of house fly biologists, but that genome is discontiguous and incomplete by contemporary standards. To improve the house fly reference genome, we sequenced, assembled, and annotated the house fly genome using improved techniques and technologies that were not available at the time of the original genome sequencing project. The new genome assembly is substantially more contiguous and complete than the previous genome. The new genome assembly has a scaffold N50 of 12.46 Mb, which is a 50-fold improvement over the previous assembly. In addition, the new genome assembly is within 1% of the estimated genome size based on flow cytometry, whereas the previous assembly was missing nearly one-third of the predicted genome sequence. The improved genome assembly has much more contiguous scaffolds containing large gene families. To provide an example of the benefit of the new genome, we used it to investigate tandemly arrayed immune gene families. The new contiguous assembly of these loci provides a clearer picture of the regulation of the expression of immune genes, and it leads to new insights into the selection pressures that shape their evolution.

4.
Pestic Biochem Physiol ; 194: 105497, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532356

RESUMO

House flies (Musca domestica L) are nuisances and vectors of pathogens between and among humans and livestock. Population suppression has been accomplished for decades with pyrethroids and acetylcholinesterase (AChE) inhibitors, but recurrent selection has led to increased frequency of alleles conferring resistance to those two classes of active ingredients (Geden et al., 2021). A common mechanism of resistance to both classes involves an altered target site (mutations in Voltage gated sodium channel (Vgsc) for pyrethroids or in Ace for AChE inhibitors). As part of ongoing efforts to understand the origin, spread and evolution of insecticide resistance alleles in house fly populations, we sampled flies in 11 different US states, sequenced, and then estimated frequencies of the Vgsc and Ace alleles. There was substantial variation in frequencies of the four common knockdown resistance alleles (kdr (L1014F), kdr-his (L1014H), super-kdr (M918T + L10414F) and 1B (T929I + L1014F) across the sampled states. The kdr allele was found in all 11 states and was the most common allele in four of them. The super-kdr allele was detected in only six collections, with the highest frequencies found in the north, northeast and central United States. The kdr-his allele was the most common allele in PA, NC, TN and TX. In addition, a novel super-kdr-like mutation in mutually exclusive exon 17a was found. The overall frequencies of the different Ace alleles, which we name based on the amino acid present at the mutation sites (V260L, A316S, G342A/V and F407Y), varied considerably between states. Five Ace alleles were identified: VAGF, VAVY, VAGY, VAAY and VSAY. Generally, the VSAY allele was the most common in the populations sampled. The susceptible allele (VAGF) was found in all populations, ranging in frequency from 3% (KS) to 41% (GA). Comparisons of these resistance allele frequencies with those previously found suggests a dynamic interaction between the different alleles, in terms of levels of resistance they confer and likely fitness costs they impose in the absence of insecticides.


Assuntos
Dípteros , Moscas Domésticas , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Animais , Humanos , Estados Unidos , Alelos , Resistência a Inseticidas/genética , Acetilcolinesterase/genética , Inseticidas/farmacologia , Piretrinas/farmacologia , Moscas Domésticas/genética , Canais de Sódio Disparados por Voltagem/genética , Mutação
5.
Pestic Biochem Physiol ; 194: 105508, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532361

RESUMO

Insecticides are commonly employed in vineyards to control vinegar flies and limit sour rot disease. Widespread resistance to available insecticides is having a negative impact on managing Drosophila melanogaster populations, rendering control of sour rot more difficult. An insecticide registered for use in vineyards to which resistance is not yet widespread (at least in New York and Missouri) is spinetoram. Spinetoram targets the nicotinic acetylcholine receptor α6, and mutations in α6 have been associated with resistance in some insects. Our goals were to select for a spinetoram resistant strain of D. melanogaster (starting with field collected populations), characterize the resistance, and identify the mutation responsible. After five selections a strain (SpinR) with >190-fold resistance was obtained. Resistance could not be overcome by insecticide synergists, suggesting an altered target site was involved. We cloned and sequenced the α6 allele from the spinetoram resistant strain and identified a mutation causing a glycine to alanine change at amino acid 301 (equivalent position to the G275E mutation found in some spinosad/spinetoram resistant insects). This mutation was found at low levels in field populations, but increased with each selection until it became homozygous in SpinR. We discuss how the identification of the spinetoram resistance mutation can be used for resistance management.


Assuntos
Drosophila melanogaster , Resistência a Inseticidas , Inseticidas , Inseticidas/toxicidade , Animais , Resistência a Inseticidas/genética , Macrolídeos
6.
Pestic Biochem Physiol ; 191: 105355, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963950

RESUMO

House flies, Musca domestica (L), are the mechanical vector of >100 human and animal pathogens, including those that are antibiotic-resistant. Given that house flies are associated closely with human and livestock activity, they present medical and veterinary health concerns. Although there are numerous strategies for control of house fly populations, chemical control has been favored in many facilities. Products with pyrethroid active ingredients have been used predominantly for >35 years in space sprays. As a result, strong selection for pyrethroid resistance has led to reduced control of many populations. Reliance on a limited number of insecticides for decades has created fly control problems necessitating the discovery and formulation of new control chemistries. Fluralaner is a relatively new insecticide and acaricide (first reported in 2010), belonging to the isoxazoline class. These insecticides target the glutamate- and gamma-aminobutyric acid-gated (GABA) chloride channels, which is a different mode of action from other insecticides used against house flies. Although is it not currently registered for house fly control in the United States, previous work has shown that fluralaner is highly toxic to house flies and that there was limited cross-resistance found in laboratory strains having high levels of resistance to other insecticides. Herein, we characterized the time and age dependency of fluralaner toxicity, detected cross-resistance in populations from across the United States, and selected a highly resistant (>11,000-fold) house fly strain. We found that the fluralaner LD50 of 18-24 h old flies was 2-fold higher than for 5-6 d old flies. This appears to be due to more rapid penetration of fluralaner into the 5-6 d old flies. Fluralaner resistance was inherited as an intermediate to incompletely dominant trait and was mapped to chromosomes 5 and 3. Resistance could be suppressed to 7-fold with piperonyl butoxide, suggesting that cytochrome P450 (CYP)-mediated detoxification was a major mechanism of resistance. Decreased penetration was also demonstrated as a mechanism of resistance. The utility of fluralaner for house fly control is discussed.


Assuntos
Dípteros , Moscas Domésticas , Inseticidas , Piretrinas , Animais , Humanos , Inseticidas/toxicidade , Resistência a Inseticidas/genética
7.
J Med Entomol ; 60(3): 494-499, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-36799337

RESUMO

The cosmopolitan mosquito Aedes aegypti is a vector of harmful arboviruses. Pyrethroid insecticides are used to reduce adult populations and prevent the spread of disease. Pyrethroids target the insect voltage-gated sodium channel (VGSC). Collectively, mutations in Vgsc that confer resistance are referred to as knock-down resistance or kdr. There are numerous kdr mutations found in A. aegypti Vgsc, and there is co-occurrence of some mutations. Full-length cDNA sequences have identified nine known kdr (e.g., 1534C) alleles. The 1534C allele is among the most common kdr alleles, but allele frequencies between populations vary considerably. We used the 1534C:RK strain, which has the 1534C (kdr) allele in the genetic background of the insecticide susceptible Rockefeller (ROCK) strain, and conducted population cage experiments to assess the potential intrinsic fitness cost of the 1534C allele relative to the susceptible allele (F1534) in the ROCK strain. Individuals were genotyped across generations using allele specific PCR. A fitness cost of the 1534C allele was detected across seven generations of mosquitos reared in the absence of insecticide selection pressure. The decrease in allele frequency was not due to drift. Comparison of our results to previous studies suggests that the magnitude of the fitness cost of kdr alleles in the absence of insecticide is disconnected from the level of resistance they confer, and that the fitness costs of different kdr alleles can be variable.


Assuntos
Aedes , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Febre Amarela , Animais , Inseticidas/farmacologia , Aedes/genética , Alelos , Resistência a Inseticidas/genética , Piretrinas/farmacologia , Canais de Sódio Disparados por Voltagem/genética , Mutação , Mosquitos Vetores/genética
8.
Pest Manag Sci ; 79(4): 1623-1627, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36562269

RESUMO

BACKGROUND: Drosophila melanogaster is a pest in vineyards because of its role in sour rot disease. Insecticides are commonly used, particularly late in the season, to control D. melanogaster and thus sour rot. Use of insecticides in vineyards and neighboring fruit production systems has led to the evolution of insecticide resistance in D. melanogaster, which is now widespread to commonly used insecticides like zeta-cypermethrin and malathion. Implementation of resistance management strategies is facilitated by an understanding of the mechanisms and genetics underlying the resistance. RESULTS: Starting with a vineyard-collected strain of D. melanogaster (NY18), we selected for a strain that was 1100-fold resistant to zeta-cypermethrin and one that was 40-fold resistant to malathion. Resistance was inherited as an incompletely dominant trait for zeta-cypermethrin. Resistance to malathion was inherited differently between reciprocal crosses. Insecticide bioassays using insecticide synergists found resistance to zeta-cypermethrin was partly suppressible with either piperonyl butoxide or S,S,S-tributylphosphorotrithionate, while resistance to malathion was unchanged by the synergists and mutations in Ace associated with the resistance were found. CONCLUSIONS: Resistance to zeta-cypermethrin is most likely due to enhanced detoxification, while the results with malathion were associated with two Ace alleles. How the newly selected strains can facilitate diagnostic tools for the identification of the mutations causing the resistance is discussed. © 2022 Society of Chemical Industry.


Assuntos
Inseticidas , Piretrinas , Animais , Malation , Drosophila melanogaster , Fazendas , Resistência a Inseticidas/genética
9.
G3 (Bethesda) ; 12(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36086997

RESUMO

Aedes aegypti is the vector of important human diseases, and genomic resources are crucial in facilitating the study of A. aegypti and its ecosystem interactions. Several laboratory-acclimated strains of this mosquito have been established, but the most used strain in toxicology studies is "Rockefeller," which was originally collected and established in Cuba 130 years ago. A full-length genome assembly of another reference strain, "Liverpool," was published in 2018 and is the reference genome for the species (AaegL5). However, genetic studies with the Rockefeller strain are complicated by the availability of only the Liverpool strain as the reference genome. Differences between Liverpool and Rockefeller have been known for decades, particularly in the expression of genes relevant to mosquito behavior and vector control (e.g. olfactory). These differences indicate that AaegL5 is likely not fully representative of the Rockefeller genome, presenting potential impediments to research. Here, we present a chromosomal-level assembly and annotation of the Rockefeller genome and a comparative characterization vs the Liverpool genome. Our results set the stage for a pan-genomic approach to understanding evolution and diversity within this important disease vector.


Assuntos
Aedes , Febre Amarela , Animais , Humanos , Aedes/genética , Mosquitos Vetores/genética , Febre Amarela/genética , Ecossistema , Cromossomos
10.
Pest Manag Sci ; 78(3): 1272-1278, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34859943

RESUMO

BACKGROUND: Cultivation of grapes is a major crop globally, particularly in support of the wine production industry which has significant economic impact in numerous countries. Sour rot is an economically important disease of grapes. It is caused by an interaction of yeast + acetic acid bacteria, and vectored by Drosophila spp. Substantial control of sour rot in wine grape vineyards has been achieved by control of Drosophila using insecticides such as zeta-cypermethrin. An outbreak of sour rot and high populations of Drosophila melanogaster were observed in 2018 in a vineyard in New York (Finger Lakes region), USA. Flies from this population were found to be resistant to zeta-cypermethrin (the active ingredient in Mustang Maxx®), but whether or not this was a widespread problem was not known. To determine if resistance was geographically limited, we surveyed populations of D. melanogaster collected from 11 vineyards across New York State and one in Missouri (USA). We also evaluated 19 alternative insecticides for their potential use for control of D. melanogaster, by determining their toxicity to a susceptible strain and by examining cross-resistance using a field-collected population. RESULTS: There were high levels of resistance to zeta-cypermethrin, malathion, and acetamiprid found in all populations sampled. Resistance to zeta-cypermethrin and malathion was stable over 33 months. Results from two vineyards also suggested that resistance to spinetoram was starting to evolve. The alternative insecticides we evaluated had LC50 values to the susceptible strain ranging from 0.65 to 15 000 ng·cm-2 . CONCLUSION: Resistance to zeta-cypermethrin, malathion, and acetamiprid is geographically widespread and the levels of resistance are similar between early season and late season collections. Cross-resistance was detected against all the insecticides tested, with the lowest levels seen for broflanilide, fipronil, and flumethrin. These patterns of resistance/cross-resistance/multiple resistance are discussed in terms of selection within and outside of vineyards. The implications of these results to insecticide resistance monitoring and management are discussed.


Assuntos
Inseticidas , Piretrinas , Animais , Drosophila melanogaster , Fazendas , Cavalos , Resistência a Inseticidas , Inseticidas/farmacologia , Malation , Piretrinas/farmacologia
11.
PLoS Negl Trop Dis ; 15(11): e0009871, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34723971

RESUMO

Aedes aegypti is an important vector of human viral diseases. This mosquito is distributed globally and thrives in urban environments, making it a serious risk to human health. Pyrethroid insecticides have been the mainstay for control of adult A. aegypti for decades, but resistance has evolved, making control problematic in some areas. One major mechanism of pyrethroid resistance is detoxification by cytochrome P450 monooxygenases (CYPs), commonly associated with the overexpression of one or more CYPs. Unfortunately, the molecular basis underlying this mechanism remains unknown. We used a combination of RNA-seq and proteomic analysis to evaluate the molecular basis of pyrethroid resistance in the highly resistant CKR strain of A. aegypti. The CKR strain has the resistance mechanisms from the well-studied Singapore (SP) strain introgressed into the susceptible Rockefeller (ROCK) strain genome. The RNA-seq and proteomics data were complimentary; each offering insights that the other technique did not provide. However, transcriptomic results did not quantitatively mirror results of the proteomics. There were 10 CYPs which had increased expression of both transcripts and proteins. These CYPs appeared to be largely trans-regulated, except for some CYPs for which we could not rule out gene duplication. We identified 65 genes and lncRNAs as potentially being responsible for elevating the expression of CYPs in CKR. Resistance was associated with multiple loci on chromosome 1 and at least one locus on chromosome 3. We also identified five CYPs that were overexpressed only as proteins, suggesting that stabilization of CYP proteins could be a mechanism of resistance. Future studies to increase the resolution of the resistance loci, and to examine the candidate genes and lncRNAs identified here will greatly enhance our understanding of CYP-mediated resistance in A. aegypti.


Assuntos
Aedes/efeitos dos fármacos , Aedes/genética , Proteínas de Insetos/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Piretrinas/farmacologia , Aedes/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Insetos/metabolismo , Mosquitos Vetores/metabolismo , Proteômica , Transcriptoma
12.
PLoS Negl Trop Dis ; 15(7): e0009549, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34252110

RESUMO

Aedes aegypti is a primary vector of viral pathogens and is responsible for millions of human infections annually that represent critical public health and economic costs. Pyrethroids are one of the most commonly used classes of insecticides to control adult A. aegypti. The insecticidal activity of pyrethroids depends on their ability to bind and disrupt the voltage-sensitive sodium channel (VSSC). In mosquitoes, a common mechanism of resistance to pyrethroids is due to mutations in Vssc (hereafter referred as knockdown resistance, kdr). In this study, we found that a kdr (410L+V1016I+1534C) allele was the main mechanism of resistance in a pyrethroid-resistant strain of A. aegypti collected in Colombia. To characterize the level of resistance these mutations confer, we isolated a pyrethroid resistant strain (LMRKDR:RK, LKR) that was congenic to the susceptible Rockefeller (ROCK) strain. The full-length cDNA of Vssc was cloned from LKR and no additional resistance mutations were present. The levels of resistance to different pyrethroids varied from 3.9- to 56-fold. We compared the levels of resistance to pyrethroids, DCJW and DDT between LKR and what was previously reported in two other congenic strains that share the same pyrethroid-susceptible background (the ROCK strain), but carry different kdr alleles (F1534C or S989P + V1016G). The resistance conferred by kdr alleles can vary depending on the stereochemistry of the pyrethroid. The 410L+1016I+1534C kdr allele does not confer higher levels of resistance to six of ten pyrethroids, relative to the 1534C allele. The importance of these results to understand the evolution of insecticide resistance and mosquito control are discussed.


Assuntos
Aedes/efeitos dos fármacos , Aedes/genética , Proteínas de Insetos/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Piretrinas/farmacologia , Canais de Sódio Disparados por Voltagem/genética , Aedes/metabolismo , Alelos , Animais , Colômbia , Técnicas de Silenciamento de Genes , Proteínas de Insetos/metabolismo , Mutação , Canais de Sódio Disparados por Voltagem/metabolismo
13.
PLoS Negl Trop Dis ; 15(7): e0009546, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34237076

RESUMO

BACKGROUND: Volatile pyrethroid insecticides, such as transfluthrin, have received increasing attention for their potent repellent activities in recent years for controlling human disease vectors. It has been long understood that pyrethroids kill insects by promoting activation and inhibiting inactivation of voltage-gated sodium channels. However, the mechanism of pyrethroid repellency remains poorly understood and controversial. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that transfluthrin repels Aedes aegypti in a hand-in-cage assay at nonlethal concentrations as low as 1 ppm. Contrary to a previous report, transfluthrin does not elicit any electroantennogram (EAG) responses, indicating that it does not activate olfactory receptor neurons (ORNs). The 1S-cis isomer of transfluthrin, which does not activate sodium channels, does not elicit repellency. Mutations in the sodium channel gene that reduce the potency of transfluthrin on sodium channels decrease transfluthrin repellency but do not affect repellency by DEET. Furthermore, transfluthrin enhances DEET repellency. CONCLUSIONS/SIGNIFICANCE: These results provide a surprising example that sodium channel activation alone is sufficient to potently repel mosquitoes. Our findings of sodium channel activation as the principal mechanism of transfluthrin repellency and potentiation of DEET repellency have broad implications in future development of a new generation of dual-target repellent formulations to more effectively repel a variety of human disease vectors.


Assuntos
Aedes/efeitos dos fármacos , Ciclopropanos/farmacologia , Fluorbenzenos/farmacologia , Proteínas de Insetos/metabolismo , Repelentes de Insetos/farmacologia , Canais de Sódio/metabolismo , Aedes/genética , Aedes/metabolismo , Animais , Ciclopropanos/química , Fluorbenzenos/química , Proteínas de Insetos/genética , Repelentes de Insetos/química , Isomerismo , Canais de Sódio/genética
14.
Nat Commun ; 12(1): 2553, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953207

RESUMO

Pyrethrum extracts from flower heads of Chrysanthemum spp. have been used worldwide in insecticides and repellents. While the molecular mechanisms of its insecticidal action are known, the molecular basis of pyrethrum repellency remains a mystery. In this study, we find that the principal components of pyrethrum, pyrethrins, and a minor component, (E)-ß-farnesene (EBF), each activate a specific type of olfactory receptor neurons in Aedes aegypti mosquitoes. We identify Ae. aegypti odorant receptor 31 (AaOr31) as a cognate Or for EBF and find that Or31-mediated repellency is significantly synergized by pyrethrin-induced activation of voltage-gated sodium channels. Thus, pyrethrum exerts spatial repellency through a novel, dual-target mechanism. Elucidation of this two-target mechanism may have potential implications in the design and development of a new generation of synthetic repellents against major mosquito vectors of infectious diseases.


Assuntos
Chrysanthemum cinerariifolium/metabolismo , Culicidae/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Inseticidas/farmacologia , Piretrinas/farmacologia , Aedes/efeitos dos fármacos , Animais , Chrysanthemum cinerariifolium/genética , Técnicas de Inativação de Genes , Controle de Mosquitos , Mosquitos Vetores , Neurônios , Receptores Odorantes/genética , Canais de Sódio Disparados por Voltagem
15.
PLoS Negl Trop Dis ; 15(3): e0009271, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33760828

RESUMO

BACKGROUND: Aedes aegypti is an important vector of many human diseases and a serious threat to human health due to its wide geographic distribution and preference for human hosts. A. aegypti also has evolved widespread resistance to pyrethroids due to the extensive use of this insecticide class over the past decades. Mutations that cause insecticide resistance result in fitness costs in the absence of insecticides. The fitness costs of pyrethroid resistance mutations in A. aegypti are still poorly understood despite their implications for arbovirus transmission. METHODOLOGY/PRINCIPLE FINDINGS: We evaluated fitness based both on allele-competition and by measuring specific fitness components (i.e. life table and mating competition) to determine the costs of the different resistance mechanisms individually and in combination. We used four congenic A. aegypti strains: Rockefeller (ROCK) is susceptible to insecticides; KDR:ROCK (KR) contains only voltage-sensitive sodium channel (Vssc) mutations S989P+V1016G (kdr); CYP:ROCK (CR) contains only CYP-mediated resistance; and CYP+KDR:ROCK (CKR) contains both CYP-mediated resistance and kdr. The kdr allele frequency decreased over nine generations in the allele-competition study regardless of the presence of CYP-mediated resistance. Specific fitness costs were variable by strain and component measured. CR and CKR had a lower net reproductive rate (R0) than ROCK or KR, and KR was not different than ROCK. There was no correlation between the level of permethrin resistance conferred by the different mechanisms and their fitness cost ratio. We also found that CKR males had a reduced mating success relative to ROCK males when attempting to mate with ROCK females. CONCLUSIONS/SIGNIFICANCE: Both kdr and CYP-mediated resistance have a fitness cost affecting different physiological aspects of the mosquito. CYP-mediated resistance negatively affected adult longevity and mating competition, whereas the specific fitness costs of kdr remains elusive. Understanding fitness costs helps us determine whether and how quickly resistance will be lost after pesticide application has ceased.


Assuntos
Aedes/efeitos dos fármacos , Aedes/genética , Resistência a Medicamentos/genética , Aptidão Genética/genética , Inseticidas/farmacologia , Piretrinas/farmacologia , Animais , Humanos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Canais de Sódio Disparados por Voltagem/genética
16.
Pest Manag Sci ; 77(9): 3847-3856, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33506993

RESUMO

The evolution of insecticide resistance is generally thought to be associated with a fitness cost in the absence of insecticide exposure. However, it is not clear how these fitness costs manifest or how universal this phenomenon is. To investigate this, we conducted a literature review of publications that studied fitness costs of insecticide resistance, selected papers that met our criteria for scientific rigor, and analyzed each class of insecticides separately as well as in aggregate. The more than 170 publications on fitness costs of insecticide resistance show that in 60% of the experiments there is a cost to having resistance, particularly for measurements of reversion of resistance and reproduction. There were differences between classes of insecticides, with fitness costs seen less commonly for organochlorines. There was considerable variation in the experiments performed. We suggest that future papers will have maximum value to the community if they quantitatively determine resistance levels, identify the resistance mechanisms present (and the associated mutations), have replicated experiments, use related strains (optimally congenic with the resistance mutation introgressed into different genetic backgrounds) and measure fitness by multiple metrics. Studies on the fitness costs of insecticide resistance will continue to enlighten our understanding of the evolutionary process and provide valuable information for resistance management. © 2021 Society of Chemical Industry.


Assuntos
Inseticidas , Aptidão Genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mutação , Reprodução
17.
Pest Manag Sci ; 77(8): 3693-3697, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33002280

RESUMO

BACKGROUND: Mutations in the voltage-sensitive sodium channel are an important mechanism of resistance to pyrethroid insecticides. In Musca domestica, common resistance alleles are kdr, super-kdr and kdr-his. The levels of resistance that these alleles confer is known, but the fitness of these alleles relative to each other and to susceptible alleles is unknown. We used crosses from congenic strains of M. domestica to establish populations with known allele frequencies and then examined the changes in allele and genotype frequencies over 25 generations under laboratory conditions. RESULTS: There was a significant fitness cost for the super-kdr allele, which decreased from the starting frequency of 0.25 to 0.05 after 25 generations. The fitness of the kdr, kdr-his and susceptible alleles were similar. The greatest change in genotype frequency was seen for the super-kdr/super-kdr genotype, which was no longer detected after 25 generations. CONCLUSION: The fitness cost associated with the super-kdr allele is consistent with previous reports and appears to be a factor in helping to restrain high levels of resistance in field populations (the super-kdr allele confers higher levels of resistance than kdr or kdr-his). It is known that the relative costs of different alleles are environmentally dependent, but our results also demonstrate that the relative fitness of given alleles depends on which alleles are present in a given population, as previous pairwise comparisons of allele fitness do not exactly match (except for super-kdr) the results obtained using this four allele study. © 2020 Society of Chemical Industry.


Assuntos
Moscas Domésticas , Inseticidas , Piretrinas , Alelos , Animais , Resistência a Inseticidas , Inseticidas/farmacologia , Mutação
18.
Sci Rep ; 10(1): 11166, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636470

RESUMO

Filth flies cause billions of dollars of losses annually to the animal production industry. Fluralaner is a relatively new pesticide currently sold for control of fleas, ticks, and mites on companion animals and poultry. We examined the efficacy of fluralaner against three species of filth flies. Insecticide-susceptible horn flies and stable flies were tested topically. Fluralaner outperformed permethrin by > 2-fold for the horn flies but underperformed permethrin by > 45-fold for stable flies at 24 h. House flies were tested topically with fluralaner in comparison to permethrin at 48 h and orally with fluralaner in comparison to imidacloprid at 24 h. Topical fluralaner was 6- to 28-fold as toxic as permethrin in four pyrethroid-resistant strains and not significantly less toxic than permethrin in a susceptible strain and a mildly pyrethroid-resistant strain. There was slight cross-resistance between topically applied fluralaner and permethrin in all five insecticide-resistant strains tested. Oral fluralaner was more toxic than imidacloprid in all four house fly strains tested, 9- to 118-fold as toxic. Oral cross-resistance between imidacloprid and fluralaner was not detected, but imidacloprid resistance was not high in any of the tested strains. Fluralaner shows promise for control of horn flies and house flies.


Assuntos
Inseticidas/toxicidade , Isoxazóis/toxicidade , Muscidae/efeitos dos fármacos , Animais , Resistência a Medicamentos , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Permetrina/toxicidade
19.
PLoS Negl Trop Dis ; 14(4): e0008154, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32302303

RESUMO

BACKGROUND: Aedes aegypti is a globally distributed vector of human diseases including dengue, yellow fever, chikungunya, and Zika. Pyrethroid insecticides are the primary means of controlling adult A. aegypti populations to suppress arbovirus outbreaks, but resistance to pyrethroid insecticides has become a global problem. Mutations in the voltage-sensitive sodium channel (Vssc) gene are a major mechanism of pyrethroid resistance in A. aegypti. Vssc resistance alleles in A. aegypti commonly have more than one mutation. However, our understanding of the evolutionary dynamics of how alleles with multiple mutations arose is poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We examined the geographic distribution and association between the common Vssc mutations (V410L, S989P, V1016G/I and F1534C) in A. aegypti by analyzing the relevant Vssc fragments in 25 collections, mainly from Asia and the Americas. Our results showed all 11 Asian populations had two types of resistance alleles: 1534C and 989P+1016G. The 1534C allele was more common with frequencies ranging from 0.31 to 0.88, while the 989P+1016G frequency ranged from 0.13 to 0.50. Four distinct alleles (410L, 1534C, 410L+1534C and 410L+1016I+1534C) were detected in populations from the Americas. The most common was 410L+1016I+1534C with frequencies ranging from 0.50 to 1.00, followed by 1534C with frequencies ranging from 0.13 to 0.50. Our phylogenetic analysis of Vssc supported multiple independent origins of the F1534C mutation. Our results indicated the 410L+1534C allele may have arisen by addition of the V410L mutation to the 1534C allele, or by a crossover event. The 410L+1016I+1534C allele was the result of one or two mutational steps from a 1534C background. CONCLUSIONS/SIGNIFICANCE: Our data corroborated previous geographic distributions of resistance mutations and provided evidence for both recombination and sequential accumulation of mutations contributing to the molecular evolution of resistance alleles in A. aegypti.


Assuntos
Aedes/genética , Alelos , Evolução Molecular , Resistência a Inseticidas/genética , Mutação , Recombinação Genética , Animais , Feminino , Haplótipos , Inseticidas/farmacologia , Masculino , Mosquitos Vetores/genética , Filogenia , Piretrinas/farmacologia
20.
Pest Manag Sci ; 76(6): 2251-2259, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31981401

RESUMO

BACKGROUND: Recent outbreaks of dengue and Zika have emphasized the importance to effectively control Aedes aegypti, which vectors the viruses causing these diseases. Pyrethroid insecticides are primarily used to control adult A. aegypti, especially during disease outbreaks. However, pyrethroid resistance in A. aegypti is an increasing problem. Mutations in the voltage-sensitive sodium channel (Vssc) are a common mechanism of pyrethroid resistance. The F1534C mutation is common and distributed globally in A. aegypti populations, but previous studies disagree about the role of this mutation in conferring resistance to pyrethroid insecticides. RESULTS: We isolated a congenic strain (1534C:ROCK) which was closely related to a susceptible strain Rockefeller (ROCK), but was homozygous for the 1534C Vssc allele. We determined resistance levels against eight insecticides that target the VSSC: six pyrethroids, DDT and DCJW (the bioactivated metabolite of indoxacarb). The resistance levels ranged from 7- to 16-fold, and resistance was inherited as an incompletely recessive trait. We also found a novel 367I+1520I+1534C allele, in addition to the 1534C and 1520I+1534C alleles, in mosquitoes from Thailand. The T1520I mutation did not increase pyrethroid resistance beyond what was conferred by the F1534C mutation alone. CONCLUSION: The F1534C Vssc mutation is common in A. aegypti populations and confers 7- to 16-fold resistance to pyrethroids, DDT, and DCJW in Aedes aegypti. These resistance levels are considerably less than previously reported for the S989P+V1016G mutations. Our results provide useful information for resistance management, specifically the levels of resistance conferred by the most common Vssc mutation in A. aegypti. © 2020 Society of Chemical Industry.


Assuntos
Aedes , Animais , Inseticidas , Mosquitos Vetores , Mutação , Piretrinas , Canais de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...