Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Immunity ; 53(5): 925-933.e4, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33129373

RESUMO

We conducted a serological study to define correlates of immunity against SARS-CoV-2. Compared to those with mild coronavirus disease 2019 (COVID-19) cases, individuals with severe disease exhibited elevated virus-neutralizing titers and antibodies against the nucleocapsid (N) and the receptor binding domain (RBD) of the spike protein. Age and sex played lesser roles. All cases, including asymptomatic individuals, seroconverted by 2 weeks after PCR confirmation. Spike RBD and S2 and neutralizing antibodies remained detectable through 5-7 months after onset, whereas α-N titers diminished. Testing 5,882 members of the local community revealed only 1 sample with seroreactivity to both RBD and S2 that lacked neutralizing antibodies. This fidelity could not be achieved with either RBD or S2 alone. Thus, inclusion of multiple independent assays improved the accuracy of antibody tests in low-seroprevalence communities and revealed differences in antibody kinetics depending on the antigen. We conclude that neutralizing antibodies are stably produced for at least 5-7 months after SARS-CoV-2 infection.


Assuntos
Betacoronavirus/imunologia , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Imunidade Humoral , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Arizona/epidemiologia , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Nucleocapsídeo/imunologia , Pandemias , Fosfoproteínas , Pneumonia Viral/sangue , Pneumonia Viral/diagnóstico , Prevalência , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2 , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto Jovem
2.
medRxiv ; 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32817969

RESUMO

We conducted an extensive serological study to quantify population-level exposure and define correlates of immunity against SARS-CoV-2. We found that relative to mild COVID-19 cases, individuals with severe disease exhibited elevated authentic virus-neutralizing titers and antibody levels against nucleocapsid (N) and the receptor binding domain (RBD) and the S2 region of spike protein. Unlike disease severity, age and sex played lesser roles in serological responses. All cases, including asymptomatic individuals, seroconverted by 2 weeks post-PCR confirmation. RBD- and S2-specific and neutralizing antibody titers remained elevated and stable for at least 2-3 months post-onset, whereas those against N were more variable with rapid declines in many samples. Testing of 5882 self-recruited members of the local community demonstrated that 1.24% of individuals showed antibody reactivity to RBD. However, 18% (13/73) of these putative seropositive samples failed to neutralize authentic SARS-CoV-2 virus. Each of the neutralizing, but only 1 of the non-neutralizing samples, also displayed potent reactivity to S2. Thus, inclusion of multiple independent assays markedly improved the accuracy of antibody tests in low seroprevalence communities and revealed differences in antibody kinetics depending on the viral antigen. In contrast to other reports, we conclude that immunity is durable for at least several months after SARS-CoV-2 infection.

3.
BMJ Case Rep ; 20182018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895577

RESUMO

Non-bacterial thrombotic endocarditis (NBTE) is a well-described phenomenon associated with malignancies due to hypercoaguable state. In the setting of pancreatic cancer, NBTE is more commonly diagnosed postmortem. We describe a case of a man who was diagnosed with pancreatic carcinoma after incidental finding of NBTE. Imaging incidentally revealed multiple strokes, bilateral renal and splenic infarcts, while subsequent workup for cardioembolic source demonstrated a 1.1×0.7 cm mitral valve vegetation. As multiple blood cultures were sterile and patient lacked clinical signs of infection, an underlying malignancy was suspected. CT abdomen demonstrated a dilated pancreatic duct, MRI showed a 2.8×2.2 cm pancreatic head mass. Endoscopic biopsy of the mass revealed pancreatic adenocarcinoma. Other than NBTE, there were no other clinical or laboratory findings to clearly suggest pancreatic cancer. Thus, incidental discovery of this mitral valve vegetation led to the diagnosis of pancreatic malignancy.


Assuntos
Endocardite não Infecciosa/complicações , Endocardite não Infecciosa/diagnóstico por imagem , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/diagnóstico por imagem , Adenocarcinoma/patologia , Assistência ao Convalescente , Idoso , Diagnóstico Diferencial , Ecocardiografia Transesofagiana/métodos , Endocardite não Infecciosa/patologia , Humanos , Achados Incidentais , Imageamento por Ressonância Magnética/métodos , Masculino , Terapia Neoadjuvante/métodos , Neoplasias Pancreáticas/patologia , Tomografia Computadorizada por Raios X/métodos
4.
Med Phys ; 44(10): 5339-5356, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28681404

RESUMO

PURPOSE: Catheter-based ultrasound applicators can generate thermal ablation of tissues adjacent to body lumens, but have limited focusing and penetration capabilities due to the small profile of integrated transducers required for the applicator to traverse anatomical passages. This study investigates a design for an endoluminal or laparoscopic ultrasound applicator with deployable acoustic reflector and fluid lens components, which can be expanded after device delivery to increase the effective acoustic aperture and allow for deeper and dynamically adjustable target depths. Acoustic and biothermal theoretical studies, along with benchtop proof-of-concept measurements, were performed to investigate the proposed design. METHODS: The design schema consists of an array of tubular transducer(s) situated at the end of a catheter assembly, surrounded by an expandable water-filled conical balloon with a secondary reflective compartment that redirects acoustic energy distally through a plano-convex fluid lens. By controlling the lens fluid volume, the convex surface can be altered to adjust the focal length or collapsed for device insertion or removal. Acoustic output of the expanded applicator assembly was modeled using the rectangular radiator method and secondary sources, accounting for reflection and refraction at interfaces. Parametric studies of transducer radius (1-5 mm), height (3-25 mm), frequency (1.5-3 MHz), expanded balloon diameter (10-50 mm), lens focal length (10-100 mm), lens fluid (silicone oil, perfluorocarbon), and tissue attenuation (0-10 Np/m/MHz) on beam distributions and focal gain were performed. A proof-of-concept applicator assembly was fabricated and characterized using hydrophone-based intensity profile measurements. Biothermal simulations of endoluminal ablation in liver and pancreatic tissue were performed for target depths between 2 and 10 cm. RESULTS: Simulations indicate that focal gain and penetration depth scale with the expanded reflector-lens balloon diameter, with greater achievable performance using perfluorocarbon lens fluid. Simulations of a 50 mm balloon OD, 10 mm transducer outer diameter (OD), 1.5 MHz assembly in water resulted in maximum intensity gain of ~170 (focal dimensions: ~12 mm length × 1.4 mm width) at ~5 cm focal depth and focal gains above 100 between 24 and 84 mm depths. A smaller (10 mm balloon OD, 4 mm transducer OD, 1.5 MHz) configuration produced a maximum gain of 6 at 9 mm depth. Compared to a conventional applicator with a fixed spherically focused transducer of 12 mm diameter, focal gain was enhanced at depths beyond 20 mm for assembly configurations with balloon diameters ≥ 20 mm. Hydrophone characterizations of the experimental assembly (31 mm reflector/lens diameter, 4.75 mm transducer radius, 1.7 MHz) illustrated focusing at variable depths between 10-70 mm with a maximum gain of ~60 and demonstrated agreement with theoretical simulations. Biothermal simulations (30 s sonication, 75 °C maximum) indicate that investigated applicator assembly configurations, at 30 mm and 50 mm balloon diameters, could create localized ellipsoidal thermal lesions increasing in size from 10 to 55 mm length × 3-6 mm width in liver tissue as target depth increased from 2 to 10 cm. CONCLUSIONS: Preliminary theoretical and experimental analysis demonstrates that combining endoluminal ultrasound with an expandable acoustic reflector and fluid lens assembly can significantly enhance acoustic focal gain and penetration from inherently smaller diameter catheter-based applicators.


Assuntos
Lentes , Transdutores , Terapia por Ultrassom/instrumentação , Temperatura
5.
J Ther Ultrasound ; 5: 10, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469915

RESUMO

BACKGROUND: The goal of this study was to theoretically investigate the feasibility of intraductal and transgastric approaches to ultrasound-based thermal therapy of pancreatic tumors, and to evaluate possible treatment strategies. METHODS: This study considered ultrasound applicators with 1.2 mm outer diameter tubular transducers, which are inserted into the tissue to be treated by an endoscopic approach, either via insertion through the gastric wall (transgastric) or within the pancreatic duct lumen (intraductal). 8 patient-specific, 3D, transient, biothermal and acoustic finite element models were generated to model hyperthermia (n = 2) and ablation (n = 6), using sectored (210°-270°, n = 4) and 360° (n = 4) transducers for treatment of 3.3-17.0 cm3 tumors in the head (n = 5), body (n = 2), and tail (n = 1) of the pancreas. A parametric study was performed to determine appropriate treatment parameters as a function of tissue attenuation, blood perfusion rates, and distance to sensitive anatomy. RESULTS: Parametric studies indicated that pancreatic tumors up to 2.5 or 2.7 cm diameter can be ablated within 10 min with the transgastric and intraductal approaches, respectively. Patient-specific simulations demonstrated that 67.1-83.3% of the volumes of four sample 3.3-11.4 cm3 tumors could be ablated within 3-10 min using transgastric or intraductal approaches. 55.3-60.0% of the volume of a large 17.0 cm3 tumor could be ablated using multiple applicator positions within 20-30 min with either transgastric or intraductal approaches. 89.9-94.7% of the volume of two 4.4-11.4 cm3 tumors could be treated with intraductal hyperthermia. Sectored applicators are effective in directing acoustic output away from and preserving sensitive structures. When acoustic energy is directed towards sensitive structures, applicators should be placed at least 13.9-14.8 mm from major vessels like the aorta, 9.4-12.0 mm from other vessels, depending on the vessel size and flow rate, and 14 mm from the duodenum. CONCLUSIONS: This study demonstrated the feasibility of generating shaped or conformal ablative or hyperthermic temperature distributions within pancreatic tumors using transgastric or intraductal ultrasound.

6.
Int J Hyperthermia ; 32(2): 97-111, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27097663

RESUMO

PURPOSE: The aim of this study is to investigate endoluminal ultrasound applicator configurations for volumetric thermal ablation and hyperthermia of pancreatic tumours using 3D acoustic and biothermal finite element models. MATERIALS AND METHODS: Parametric studies compared endoluminal heating performance for varying applicator transducer configurations (planar, curvilinear-focused, or radial-diverging), frequencies (1-5 MHz), and anatomical conditions. Patient-specific pancreatic head and body tumour models were used to evaluate feasibility of generating hyperthermia and thermal ablation using an applicator positioned in the duodenal or stomach lumen. Temperature and thermal dose were calculated to define ablation (> 240 EM(43 °C)) and moderate hyperthermia (40-45 °C) boundaries, and to assess sparing of sensitive tissues. Proportional-integral control was incorporated to regulate maximum temperature to 70-80 °C for ablation and 45 °C for hyperthermia in target regions. RESULTS: Parametric studies indicated that 1-3 MHz planar transducers are the most suitable for volumetric ablation, producing 5-8 cm(3) lesion volumes for a stationary 5-min sonication. Curvilinear-focused geometries produce more localised ablation to 20-45 mm depth from the GI tract and enhance thermal sparing (T(max) < 42 °C) of the luminal wall. Patient anatomy simulations show feasibility in ablating 60.1-92.9% of head/body tumour volumes (4.3-37.2 cm(3)) with dose < 15 EM(43 °C) in the luminal wall for 18-48 min treatment durations, using 1-3 applicator placements in GI lumen. For hyperthermia, planar and radial-diverging transducers could maintain up to 8 cm(3) and 15 cm(3) of tissue, respectively, between 40-45 °C for a single applicator placement. CONCLUSIONS: Modelling studies indicate the feasibility of endoluminal ultrasound for volumetric thermal ablation or hyperthermia treatment of pancreatic tumour tissue.


Assuntos
Modelos Teóricos , Neoplasias Pancreáticas/terapia , Modelagem Computacional Específica para o Paciente , Terapia por Ultrassom , Humanos , Transdutores
7.
Neurol Clin Pract ; 6(6): 487-497, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29849210

RESUMO

BACKGROUND: Accurate coding and billing are critical for the financial health of hospitals. Neurologic inpatient services have specific, complex documentation requirements, which can result in inadequate billing. METHODS: We retrospectively compared coding practices from July 2013 to June 2014 (FY2014) using evaluation and management codes for initial inpatient encounters (CPT 99221-3) of a neurohospitalist group (NHG) to a hospital medicine group (HMG) and to national benchmarks. We further examined a sample of the lowest level encounters (CPT 99221) from the 4th quarter of FY2014 for specific deficiencies and compared these among groups. RESULTS: Low codes (CPT 99221) were more common in the NHG than the HMG and national benchmarks (54% vs 7% vs 4%, p < 0.01). Deficiencies in the examination were the most common reason for low coding in the NHG compared to the HMG (62% vs 5%, p < 0.001). Deficiencies in social history were more common in the NHG than the HMG (11% vs 0%, p < 0.003) but deficiencies in family history (34% vs 37%, p = 0.75) and review of systems (30% vs 30%, p = 1.0) were common in both groups. In the NHG group, documentation did not reflect the acuity of patients' medical conditions. CONCLUSIONS: Neurologists should pay close attention to documentation requirements-especially the neurologic examination-in order to allow for accurate coding and billing.

8.
Proc SPIE Int Soc Opt Eng ; 93262015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26677314

RESUMO

An ultrasound applicator for endoluminal thermal therapy of pancreatic tumors has been introduced and evaluated through acoustic/biothermal simulations and ex vivo experimental investigations. Endoluminal therapeutic ultrasound constitutes a minimally invinvasive conformal therapy and is compatible with ultrasound or MR-based image guidance. The applicator would be placed in the stomach or duodenal lumen, and sonication would be performed through the luminal wall into the tumor, with concurrent water cooling of the wall tissue to prevent its thermal injury. A finite-element (FEM) 3D acoustic and biothermal model was implemented for theoretical analysis of the approach. Parametric studies over transducer geometries and frequencies revealed that operating frequencies within 1-3 MHz maximize penetration depth and lesion volume while sparing damage to the luminal wall. Patient-specific FEM models of pancreatic head tumors were generated and used to assess the feasibility of performing endoluminal ultrasound thermal ablation and hyperthermia of pancreatic tumors. Results indicated over 80% of the volume of small tumors (~2 cm diameter) within 35 mm of the duodenum could be safely ablated in under 30 minutes or elevated to hyperthermic temperatures at steady-state. Approximately 60% of a large tumor (~5 cm diameter) model could be safely ablated by considering multiple positions of the applicator along the length of the duodenum to increase coverage. Prototype applicators containing two 3.2 MHz planar transducers were fabricated and evaluated in ex vivo porcine carcass heating experiments under MR temperature imaging (MRTI) guidance. The applicator was positioned in the stomach adjacent to the pancreas, and sonications were performed for 10 min at 5 W/cm2 applied intensity. MRTI indicated over 40°C temperature rise in pancreatic tissue with heating penetration extending 3 cm from the luminal wall.

9.
Magn Reson Med ; 74(6): 1548-55, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26390357

RESUMO

PURPOSE: To demonstrate the feasibility of using ultrashort echo-time MRI to quantify T1 changes in cortical bone due to heating. METHODS: Variable flip-angle T1 mapping combined with 3D ultrashort echo-time imaging was used to measure T1 in cortical bone. A calibration experiment was performed to detect T1 changes with temperature in ex vivo cortical bone samples from a bovine femur. Ultrasound heating experiments were performed using an interstitial applicator in ex vivo bovine femur specimens, and heat-induced T1 changes were quantified. RESULTS: The calibration experiment demonstrated that T1 increases with temperature in cortical bone. We observed a linear relationship between temperature and T1 with a linear coefficient between 0.67 and 0.84 ms/°C over a range of 25-70°C. The ultrasound heating experiments showed increased T1 changes in the heated regions, and the relationship between the temperature changes and T1 changes was similar to that of the calibration. CONCLUSION: We demonstrated a temperature dependence of T1 in ex vivo cortical bone using a variable flip-angle ultrashort echo-time T1 mapping method.


Assuntos
Temperatura Corporal/fisiologia , Fêmur/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Termografia/métodos , Animais , Temperatura Corporal/efeitos da radiação , Bovinos , Estudos de Viabilidade , Fêmur/efeitos da radiação , Calefação/métodos , Ondas de Choque de Alta Energia , Técnicas In Vitro , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Inquiry ; 522015.
Artigo em Inglês | MEDLINE | ID: mdl-26310500

RESUMO

Although uncompensated care for hospital-based care has fallen dramatically since the implementation of the Affordable Care Act and Medicaid expansion, the changes in hospital physician reimbursement are not known. We evaluated if payer mix and physician reimbursement by encounter changed between 2013 and 2014 in an academic hospitalist practice in a Medicaid expansion state. This was a retrospective cohort study of all general medicine inpatient admissions to an academic hospitalist group in 2013 and 2014. The proportion of encounters by payer and reimbursement/inpatient encounter were compared in 2013 versus 2014. A sensitivity analysis determined the relative contribution of different factors to the change in reimbursement/encounter. Among 37 540 and 40 397 general medicine inpatient encounters in 2013 and 2014, respectively, Medicaid encounters increased (17.3% to 30.0%, P < .001), uninsured encounters decreased (18.4% to 6.3%, P < 0.001), and private payer encounters also decreased (14.1% to 13.3%, P = .001). The median reimbursement/encounter increased 4.2% from $79.98/encounter in 2013 to $83.36/encounter in 2014 (P < .001). In a sensitivity analysis, changes in length of stay, proportions in encounter type by payer, payer mix, and reimbursement for encounter type by payer accounted for -0.7%, 0.8%, 2.0%, and 2.3% of the reimbursement change, respectively. From 2013 to 2014, Medicaid encounters increased, and uninsured and private payer encounters decreased within our hospitalist practice. Reimbursement/encounter also increased, much of which could be attributed to a change in payer mix. Further analyses of physician reimbursement in Medicaid expansion and non-expansion states would further delineate reimbursement changes that are directly attributable to Medicaid expansion.


Assuntos
Reembolso de Seguro de Saúde/economia , Medicaid/economia , Patient Protection and Affordable Care Act/estatística & dados numéricos , Médicos/economia , Humanos , Seguro Saúde/economia , Seguro Saúde/estatística & dados numéricos , Reembolso de Seguro de Saúde/estatística & dados numéricos , Pessoas sem Cobertura de Seguro de Saúde/estatística & dados numéricos , Medicare/economia , Estudos Retrospectivos , Cuidados de Saúde não Remunerados , Estados Unidos
12.
Int J Hyperthermia ; 30(4): 228-44, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25017322

RESUMO

PURPOSE: Theoretical parametric and patient-specific models are applied to assess the feasibility of interstitial ultrasound ablation of tumours in and near the spine and to identify potential treatment delivery strategies. METHODS: 3D patient-specific finite element models (n = 11) of interstitial ultrasound ablation of tumours associated with the spine were generated. Gaseous nerve insulation and various applicator configurations, frequencies (3 and 7 MHz), placement trajectories, and tumour locations were simulated. Parametric studies with multilayered models investigated the impacts of tumour attenuation, tumour dimension, and the thickness of bone insulating critical structures. Temperature and thermal dose were calculated to define ablation (>240 equivalent minutes at 43 °C (EM43 °C)) and safety margins (<45 °C and <6 EM43 °C), and to determine performance and required delivery parameters. RESULTS: Osteolytic tumours (≤44 mm) encapsulated by bone could be successfully ablated with 7 MHz interstitial ultrasound (8.1-16.6 W/cm(2), 120-5900 J, 0.4-15 min). Ablation of tumours (94.6-100% volumetric) 0-14.5 mm from the spinal canal was achieved within 3-15 min without damaging critical nerves. 3 MHz devices provided faster ablation (390 versus 930 s) of an 18 mm diameter osteoblastic (high bone content) volume than 7 MHz devices. Critical anatomy in proximity to the tumour could be protected by selection of appropriate applicator configurations, active sectors, and applied power schemas, and through gaseous insulation. Preferential ultrasound absorption at bone surfaces facilitated faster, more effective ablations in osteolytic tumours and provided isolation of ablative energies and temperatures. CONCLUSIONS: Parametric and patient-specific studies demonstrated the feasibility and potential advantages of interstitial ultrasound ablation treatment of paraspinal and osteolytic vertebral tumours.


Assuntos
Hipertermia Induzida/métodos , Neoplasias da Coluna Vertebral/terapia , Terapia por Ultrassom/métodos , Acústica , Análise de Elementos Finitos , Humanos , Modelos Teóricos
13.
Int J Hyperthermia ; 29(7): 629-42, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24102393

RESUMO

PURPOSE: The objectives of this study were to develop numerical models of interstitial ultrasound ablation of tumours within or adjacent to bone, to evaluate model performance through theoretical analysis, and to validate the models and approximations used through comparison to experiments. METHODS: 3D transient biothermal and acoustic finite element models were developed, employing four approximations of 7-MHz ultrasound propagation at bone/soft tissue interfaces. The various approximations considered or excluded reflection, refraction, angle-dependence of transmission coefficients, shear mode conversion, and volumetric heat deposition. Simulations were performed for parametric and comparative studies. Experiments within ex vivo tissues and phantoms were performed to validate the models by comparison to simulations. Temperature measurements were conducted using needle thermocouples or magnetic resonance temperature imaging (MRTI). Finite element models representing heterogeneous tissue geometries were created based on segmented MR images. RESULTS: High ultrasound absorption at bone/soft tissue interfaces increased the volumes of target tissue that could be ablated. Models using simplified approximations produced temperature profiles closely matching both more comprehensive models and experimental results, with good agreement between 3D calculations and MRTI. The correlation coefficients between simulated and measured temperature profiles in phantoms ranged from 0.852 to 0.967 (p-value < 0.01) for the four models. CONCLUSIONS: Models using approximations of interstitial ultrasound energy deposition around bone/soft tissue interfaces produced temperature distributions in close agreement with comprehensive simulations and experimental measurements. These models may be applied to accurately predict temperatures produced by interstitial ultrasound ablation of tumours near and within bone, with applications toward treatment planning.


Assuntos
Modelos Teóricos , Neoplasias/terapia , Terapia por Ultrassom , Acústica , Animais , Temperatura Corporal , Osso e Ossos , Bovinos , Análise de Elementos Finitos , Músculos , Suínos
14.
Proc SPIE Int Soc Opt Eng ; 8584: 85840V, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24860246

RESUMO

Image-guided thermal interventions have been proposed for potential palliative and curative treatments of pancreatic tumors. Catheter-based ultrasound devices offer the potential for temporal and 3D spatial control of the energy deposition profile. The objective of this study was to apply theoretical and experimental techniques to investigate the feasibility of endogastric, intraluminal and transgastric catheter-based ultrasound for MR guided thermal therapy of pancreatic tumors. The transgastric approach involves insertion of a catheter-based ultrasound applicator (array of 1.5 mm OD x 10 mm transducers, 360° or sectored 180°, ~7 MHz frequency, 13-14G cooling catheter) directly into the pancreas, either endoscopically or via image-guided percutaneous placement. An intraluminal applicator, of a more flexible but similar construct, was considered for endoscopic insertion directly into the pancreatic or biliary duct. An endoluminal approach was devised based on an ultrasound transducer assembly (tubular, planar, curvilinear) enclosed in a cooling balloon which is endoscopically positioned within the stomach or duodenum, adjacent to pancreatic targets from within the GI tract. A 3D acoustic bio-thermal model was implemented to calculate acoustic energy distributions and used a FEM solver to determine the transient temperature and thermal dose profiles in tissue during heating. These models were used to determine transducer parameters and delivery strategies and to study the feasibility of ablating 1-3 cm diameter tumors located 2-10 mm deep in the pancreas, while thermally sparing the stomach wall. Heterogeneous acoustic and thermal properties were incorporated, including approximations for tumor desmoplasia and dynamic changes during heating. A series of anatomic models based on imaging scans of representative patients were used to investigate the three approaches. Proof of concept (POC) endogastric and transgastric applicators were fabricated and experimentally evaluated in tissue mimicking phantoms, ex vivo tissue and in vivo canine model under multi-slice MR thermometry. RF micro-coils were evaluated to enable active catheter-tracking and prescription of thermometry slice positions. Interstitial and intraluminal ultrasound applicators could be used to ablate (t43>240 min) tumors measuring 2.3-3.4 cm in diameter when powered with 20-30 W/cm2 at 7 MHz for 5-10 min. Endoluminal applicators with planar and curvilinear transducers operating at 3-4 MHz could be used to treat tumors up to 20-25 mm deep from the stomach wall within 5 min. POC devices were fabricated and successfully integrated into the MRI environment with catheter tracking, real-time thermometry and closed-loop feedback control.

15.
Proc SPIE Int Soc Opt Eng ; 7901: 79010O, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-25076820

RESUMO

A clinical treatment delivery platform has been developed and is being evaluated in a clinical pilot study for providing 3D controlled hyperthermia with catheter-based ultrasound applicators in conjunction with high dose rate (HDR) brachytherapy. Catheter-based ultrasound applicators are capable of 3D spatial control of heating in both angle and length of the devices, with enhanced radial penetration of heating compared to other hyperthermia technologies. Interstitial and endocavity ultrasound devices have been developed specifically for applying hyperthermia within HDR brachytherapy implants during radiation therapy in the treatment of cervix and prostate. A pilot study of the combination of catheter based ultrasound with HDR brachytherapy for locally advanced prostate and cervical cancer has been initiated, and preliminary results of the performance and heating distributions are reported herein. The treatment delivery platform consists of a 32 channel RF amplifier and a 48 channel thermocouple monitoring system. Controlling software can monitor and regulate frequency and power to each transducer section as required during the procedure. Interstitial applicators consist of multiple transducer sections of 2-4 cm length × 180 deg and 3-4 cm × 360 deg. heating patterns to be inserted in specific placed 13g implant catheters. The endocavity device, designed to be inserted within a 6 mm OD plastic tandem catheter within the cervix, consists of 2-3 transducers × dual 180 or 360 deg sectors. 3D temperature based treatment planning and optimization is dovetailed to the HDR optimization based planning to best configure and position the applicators within the catheters, and to determine optimal base power levels to each transducer section. To date we have treated eight cervix implants and six prostate implants. 100 % of treatments achieved a goal of >60 min duration, with therapeutic temperatures achieved in all cases. Thermal dosimetry within the hyperthermia target volume (HTV) and clinical target volume (CTV) are reported. Catheter-based ultrasound hyperthermia with HDR appears feasible with therapeutic temperature coverage of the target volume within the prostate or cervix while sparing surrounding more sensitive regions. (NIHR01CA122276).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...