Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732104

RESUMO

Hypertensive disorders of pregnancy (HDP), including preeclampsia (PE) and gestational hypertension (GH), are major causes of maternal and foetal morbidity and mortality. This review elucidates the role of regulatory T cells (Tregs) in the immunological aspects of HDP and explores their therapeutic potential. Tregs, which play a critical role in maintaining immune homeostasis, are crucial in pregnancy to prevent immune-mediated rejection of the foetus. The review highlights that Tregs contribute to immunological adaptation in normal pregnancy, ensuring foetal acceptance. In contrast, HDP is associated with Treg dysfunction, which is marked by decreased numbers and impaired regulatory capacity, leading to inadequate immune tolerance and abnormal placental development. This dysfunction is particularly evident in PE, in which Tregs fail to adequately modulate the maternal immune response against foetal antigens, contributing to the pathophysiology of the disorder. Therapeutic interventions aiming to modulate Treg activity represent a promising avenue for HDP management. Studies in animal models and limited clinical trials suggest that enhancing Treg functionality could mitigate HDP symptoms and improve pregnancy outcomes. However, given the multifactorial nature of HDP and the intricate regulatory mechanisms of Tregs, the review explores the complexities of translating in vitro and animal model findings into effective clinical therapies. In conclusion, while the precise role of Tregs in HDP is still being unravelled, their central role in immune regulation during pregnancy is indisputable. Further research is needed to fully understand the mechanisms by which Tregs contribute to HDP and to develop targeted therapies that can safely and effectively harness their regulatory potential for treating hypertensive diseases of pregnancy.


Assuntos
Hipertensão Induzida pela Gravidez , Linfócitos T Reguladores , Humanos , Linfócitos T Reguladores/imunologia , Gravidez , Feminino , Hipertensão Induzida pela Gravidez/imunologia , Hipertensão Induzida pela Gravidez/terapia , Animais , Pré-Eclâmpsia/imunologia , Pré-Eclâmpsia/terapia , Tolerância Imunológica
2.
Cytometry A ; 103(5): 362-367, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740883

RESUMO

The panel was developed and optimized for monitoring changes in homing capacity and functional diversity of human CD4+ conventional and regulatory T cell subsets. The analysis was based on expression of only surface markers in freshly isolated peripheral blood mononuclear cells (PBMCs) to reduce at minimum any alteration due to permeabilization or freezing/thawing procedures. We included markers to assess the distribution of naïve and memory populations based on the expression of CD45RA, CCR7, CD25, CD28 and CD95 in both conventional and regulatory T cells. The identification of major functional subsets was performed using CCR4, CCR6, CCR10, CXCR3 and CXCR5. Homing capacity of these subsets to skin, airway tract, gut and inflammatory lesions could finally be assessed with the markers CLA, CCR3, CCR5 and integrin ß7. The panel was tested on freshly isolated PBMCs from healthy donors and patients with allergic rhinitis or autoimmune disorders.


Assuntos
Leucócitos Mononucleares , Linfócitos T Reguladores , Humanos , Citometria de Fluxo/métodos , Subpopulações de Linfócitos T , Pele
3.
STAR Protoc ; 3(1): 101204, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35252886

RESUMO

To analyze immune cell populations accurately, a large number of Peripheral Blood Mononuclear Cells (PBMCs) must be obtained from blood samples. Traditional manual isolation and SepMateTM isolation of PBMCs consistently yield blood-stained plasma layers and overall low numbers of CD4+ and CD8+ cells. Here, we describe an optimized protocol, using PBS with EDTA to increase PBMC yield from pregnant patients. This protocol enables analysis of CD4+, CD8+, and Regulatory T Cells and is potentially applicable to any immune cell population. For complete details on the use and execution of this protocol, please refer to the SepMateTM website https://www.stemcell.com/products/brands/SepMateTM-pbmc-isolation.html.


Assuntos
Leucócitos Mononucleares , Leucócitos , Linfócitos T CD8-Positivos , Feminino , Congelamento , Humanos , Gravidez , Linfócitos T Reguladores
4.
Front Immunol ; 12: 737862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777347

RESUMO

Background: Several studies report the role of Regulatory T-cells (Tregs) in the pathophysiology of pregnancy adverse outcomes. Objective: The aim of this systematic review and meta-analysis was to determine whether there is an association between regulatory T cell levels and pregnancy adverse outcomes (PAOs), including pre-eclampsia and preterm birth (PTB). Method: Literature searches were conducted in PubMed/MEDLINE, Embase, and Cochrane CENTRAL databases. Inclusion criteria were original articles (clinical trials, case-control studies and cohort studies) comparing Tregs, sampled from the decidua or maternal blood, in healthy pregnant women versus women with pre-eclampsia or PTB. The outcome was standardised mean difference (SMD) in Treg numbers. The tau-squared (Tau²), inconsistency index (I²), and chi-squared (χ²) test quantified heterogeneity among different studies. Analyses were performed in RevMan software V.5.4.0 for Mac using a random-effects model with outcome data reported with 95% confidence intervals (CI). This study was prospectively registered with PROSPERO (CRD42020205469). PRISMA guidelines were followed. Results: From 4,085 unique studies identified, 36 were included in qualitative synthesis, and 34 were included in quantitative synthesis (meta-analysis). In total, there were 1,783 participants in these studies: healthy controls=964, pre-eclampsia=759, PTB=60. Thirty-two studies compared Tregs in healthy pregnant women and women with pre-eclampsia, and 30 of these sampled Tregs from peripheral blood showing significantly higher Treg numbers in healthy pregnancies (SMD; 1.46; 95% CI, 1.03-1.88; I²=92%). Four studies sampled Tregs from the maternal decidua showing higher Tregs in healthy pregnancies (SMD, 0.76; 95% CI, -0.13-1.65; I²=84%). No difference was found in the number of Tregs between early versus late pre-eclampsia (SMD,-1.17; 95% CI, -2.79-0.44; I²=94%). For PTB, two studies compared Tregs sampled from the peripheral blood with a tendency for higher Tregs in healthy pregnancies but this did not reach significance (SMD, 2.18; 95% CI, -1.34-5.70; I²=96%). Subcohort analysis using Treg analysis (flow cytometry vs. qPCR vs. immunofluorescence tissue staining) showed similar associations. Conclusion: Lower Tregs in pregnancy, sampled from the maternal peripheral blood, are associated with pre-eclampsia. There is a need for further studies to confirm a relationship between low Tregs and PTB. As the precise mechanisms by which Tregs may mediate pre-eclampsia and PTB remain unclear, further fundamental research is necessary to elucidate the underlying processes and highlight the causative link. Systematic Review Registration: PROSPERO, identifier CRD42020205469.


Assuntos
Complicações na Gravidez/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Contagem de Linfócito CD4 , Feminino , Humanos , Fenótipo , Valor Preditivo dos Testes , Gravidez , Complicações na Gravidez/metabolismo , Complicações na Gravidez/fisiopatologia , Resultado da Gravidez , Medição de Risco , Fatores de Risco , Linfócitos T Reguladores/metabolismo
5.
Eur J Immunol ; 51(10): 2522-2530, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34320225

RESUMO

Clinical trials of Treg therapy in transplantation are currently entering phases IIa and IIb, with the majority of these employing polyclonal Treg populations that harbor a broad specificity. Enhancing Treg specificity is possible with the use of chimeric antigen receptors (CARs), which can be customized to respond to a specific human leukocyte antigen (HLA). In this study, we build on our previous work in the development of HLA-A2 CAR-Tregs by further equipping cells with the constitutive expression of interleukin 10 (IL-10) and an imaging reporter as additional payloads. Cells were engineered to express combinations of these domains and assessed for phenotype and function. Cells expressing the full construct maintained a stable phenotype after transduction, were specifically activated by HLA-A2, and suppressed alloresponses potently. The addition of IL-10 provided an additional advantage to suppressive capacity. This study therefore provides an important proof-of-principle for this cell engineering approach for next-generation Treg therapy in transplantation.


Assuntos
Expressão Gênica , Imunomodulação , Interleucina-10/genética , Fenótipo , Receptores de Antígenos Quiméricos/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Ordem dos Genes , Engenharia Genética , Vetores Genéticos/genética , Humanos , Interleucina-10/metabolismo , Receptores de Antígenos Quiméricos/imunologia
6.
Eur J Immunol ; 51(8): 2086-2092, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33949684

RESUMO

Regulatory T-cells (Tregs) are a subset of T cells generated in the thymus with intrinsic immunosuppressive properties. Phase I clinical trials have shown safety and feasibility of Treg infusion to promote immune tolerance and new studies are ongoing to evaluate their efficacy. During heart transplantation, thymic tissue is routinely discarded providing an attractive source of Tregs. In this study, we developed a GMP-compatible protocol for expanding sorted thymus-derived CD3+ CD4+ CD25+ CD127- (Tregs) as well as CD3+ CD4+ CD25+ CD127- CD45RA+ (RA+ Tregs) cells. We aimed to understand whether thymic RA+ Tregs can be isolated and expanded offering an advantage in terms of stability as it has been previously shown for circulating adult CD45RA+ Tregs. We show that both Tregs and RA+ Tregs could be expanded in large numbers and the presence of rapamycin is essential to inhibit the growth of IFN-γ producing cells. High levels of FOXP3, CTLA4, and CD25 expression, demethylation of the FOXP3 promoter, and high suppressive ability were found with no differences between Tregs and RA+ Tregs. After freezing and thawing, all Treg preparations maintained their suppressive ability, stability, as well as CD25 and FOXP3 expression. The number of thymic Tregs that could be isolated with our protocol, their fold expansion, and functional characteristics allow the clinical application of this cell population to promote tolerance in pediatric heart transplant patients.


Assuntos
Citometria de Fluxo/métodos , Transplante de Coração , Linfócitos T Reguladores , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Timo/citologia
7.
PLoS Biol ; 19(4): e3001199, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33901179

RESUMO

Programmed cell death protein 1 (PD-1) is expressed on T cells upon T cell receptor (TCR) stimulation. PD-1 ligand 1 (PD-L1) is expressed in most tumor environments, and its binding to PD-1 on T cells drives them to apoptosis or into a regulatory phenotype. The fact that PD-L1 itself is also expressed on T cells upon activation has been largely neglected. Here, we demonstrate that PD-L1 ligation on human CD25-depleted CD4+ T cells, combined with CD3/TCR stimulation, induces their conversion into highly suppressive T cells. Furthermore, this effect was most prominent in memory (CD45RA-CD45RO+) T cells. PD-L1 engagement on T cells resulted in reduced ERK phosphorylation and decreased AKT/mTOR/S6 signaling. Importantly, T cells from rheumatoid arthritis patients exhibited high basal levels of phosphorylated ERK and following PD-L1 cross-linking both ERK signaling and the AKT/mTOR/S6 pathway failed to be down modulated, making them refractory to the acquisition of a regulatory phenotype. Altogether, our results suggest that PD-L1 signaling on memory T cells could play an important role in resolving inflammatory responses; maintaining a tolerogenic environment and its failure could contribute to ongoing autoimmunity.


Assuntos
Antígeno B7-H1/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T Reguladores/fisiologia , Antígeno B7-H1/fisiologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/fisiologia , Transdiferenciação Celular/genética , Transdiferenciação Celular/imunologia , Estudos de Coortes , Humanos , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Memória Imunológica/fisiologia , Antígenos Comuns de Leucócito/metabolismo , Fenótipo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/fisiologia , Transdução de Sinais/fisiologia , Linfócitos T Reguladores/metabolismo
8.
Mol Ther Methods Clin Dev ; 20: 324-336, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33511246

RESUMO

Regulatory T cells (Tregs) are emerging as a new cell-based therapy in solid organ transplantation. Adoptive transfer of Tregs has been shown preclinically to protect from graft rejection, and the safety of Treg therapy has been demonstrated in clinical trials. Despite these successes, the in vivo distribution and persistence of adoptively transferred Tregs remained elusive, which hampers clinical translation. Here we isolated human Tregs using a GMP-compatible protocol and lentivirally transduced them with the human sodium iodide symporter to render them traceable in vivo by radionuclide imaging. Engineered human Tregs were characterized for phenotype, survival, suppressive capacity, and reporter function. To study their trafficking behavior, they were subsequently administered to humanized mice with human skin transplants. Traceable Tregs were quantified in skin grafts by non-invasive nano-single-photon emission computed tomography (nanoSPECT)/computed tomography (CT) for up to 40 days, and the results were validated ex vivo. Using this approach, we demonstrated that Treg trafficking to skin grafts was regulated by the presence of recipient Gr-1+ innate immune cells. We demonstrated the utility of radionuclide reporter gene-afforded quantitative Treg in vivo tracking, addressing a fundamental need in Treg therapy development and offering a clinically compatible methodology for future Treg therapy imaging in humans.

9.
Am J Transplant ; 21(4): 1603-1611, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33171020

RESUMO

Short-term outcomes in kidney transplantation are marred by progressive transplant failure and mortality secondary to immunosuppression toxicity. Immune modulation with autologous polyclonal regulatory T cell (Treg) therapy may facilitate immunosuppression reduction promoting better long-term clinical outcomes. In a Phase I clinical trial, 12 kidney transplant recipients received 1-10 × 106 Treg per kg at Day +5 posttransplantation in lieu of induction immunosuppression (Treg Therapy cohort). Nineteen patients received standard immunosuppression (Reference cohort). Primary outcomes were rejection-free and patient survival. Patient and transplant survival was 100%; acute rejection-free survival was 100% in the Treg Therapy versus 78.9% in the reference cohort at 48 months posttransplant. Treg therapy revealed no excess safety concerns. Four patients in the Treg Therapy cohort had mycophenolate mofetil withdrawn successfully and remain on tacrolimus monotherapy. Treg infusion resulted in a long-lasting dose-dependent increase in peripheral blood Tregs together with an increase in marginal zone B cell numbers. We identified a pretransplantation immune phenotype suggesting a high risk of unsuccessful ex-vivo Treg expansion. Autologous Treg therapy is feasible, safe, and is potentially associated with a lower rejection rate than standard immunosuppression. Treg therapy may provide an exciting opportunity to minimize immunosuppression therapy and improve long-term outcomes.


Assuntos
Transplante de Rim , Estudos de Viabilidade , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/prevenção & controle , Humanos , Imunossupressores/uso terapêutico , Doadores Vivos , Monitorização Imunológica , Linfócitos T Reguladores
10.
Eur J Immunol ; 51(1): 39-55, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33275279

RESUMO

CD4+ CD25high CD127low/- FOXP3+ T regulatory cells are responsible for maintaining immune tolerance and controlling excessive immune responses. Treg cell use in pre-clinical animal models showed the huge therapeutic potential of these cells in immune-mediated diseases and laid the foundations for their applications in therapy in humans. Currently, there are several clinical trials utilizing the adoptive transfer of Treg cells to reduce the morbidity in autoimmune disorders, allogeneic HSC transplantation, and solid organ transplantation. However, a large part of them utilizes total Treg cells without distinction of their biological variability. Many studies on the heterogeneity of Treg cell population revealed distinct subsets with different functions in the control of the immune response and induction of peripheral tolerance. Some of these subsets also showed a role in controlling the general homeostasis of non-lymphoid tissues. All these Treg cell subsets and their peculiar properties can be therefore exploited to develop novel therapeutic approaches. This review describes these functionally distinct subsets, their phenotype, homing properties and functions in lymphoid and non-lymphoid tissues. In addition, we also discuss the limitations in using Treg cells as a cellular therapy and the strategies to enhance their efficacy.


Assuntos
Imunoterapia Adotiva/métodos , Linfócitos T Reguladores/classificação , Linfócitos T Reguladores/imunologia , Tecido Adiposo/citologia , Tecido Adiposo/imunologia , Aloenxertos , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Fatores de Transcrição Forkhead/imunologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Tolerância Imunológica , Camundongos , Modelos Imunológicos , Tolerância Periférica , Imunologia de Transplantes , Cicatrização/imunologia
11.
Lancet ; 395(10237): 1627-1639, 2020 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-32446407

RESUMO

BACKGROUND: Use of cell-based medicinal products (CBMPs) represents a state-of-the-art approach for reducing general immunosuppression in organ transplantation. We tested multiple regulatory CBMPs in kidney transplant trials to establish the safety of regulatory CBMPs when combined with reduced immunosuppressive treatment. METHODS: The ONE Study consisted of seven investigator-led, single-arm trials done internationally at eight hospitals in France, Germany, Italy, the UK, and the USA (60 week follow-up). Included patients were living-donor kidney transplant recipients aged 18 years and older. The reference group trial (RGT) was a standard-of-care group given basiliximab, tapered steroids, mycophenolate mofetil, and tacrolimus. Six non-randomised phase 1/2A cell therapy group (CTG) trials were pooled and analysed, in which patients received one of six CBMPs containing regulatory T cells, dendritic cells, or macrophages; patient selection and immunosuppression mirrored the RGT, except basiliximab induction was substituted with CBMPs and mycophenolate mofetil tapering was allowed. None of the trials were randomised and none of the individuals involved were masked. The primary endpoint was biopsy-confirmed acute rejection (BCAR) within 60 weeks after transplantation; adverse event coding was centralised. The RTG and CTG trials are registered with ClinicalTrials.gov, NCT01656135, NCT02252055, NCT02085629, NCT02244801, NCT02371434, NCT02129881, and NCT02091232. FINDINGS: The seven trials took place between Dec 11, 2012, and Nov 14, 2018. Of 782 patients assessed for eligibility, 130 (17%) patients were enrolled and 104 were treated and included in the analysis. The 66 patients who were treated in the RGT were 73% male and had a median age of 47 years. The 38 patients who were treated across six CTG trials were 71% male and had a median age of 45 years. Standard-of-care immunosuppression in the recipients in the RGT resulted in a 12% BCAR rate (expected range 3·2-18·0). The overall BCAR rate for the six parallel CTG trials was 16%. 15 (40%) patients given CBMPs were successfully weaned from mycophenolate mofetil and maintained on tacrolimus monotherapy. Combined adverse event data and BCAR episodes from all six CTG trials revealed no safety concerns when compared with the RGT. Fewer episodes of infections were registered in CTG trials versus the RGT. INTERPRETATION: Regulatory cell therapy is achievable and safe in living-donor kidney transplant recipients, and is associated with fewer infectious complications, but similar rejection rates in the first year. Therefore, immune cell therapy is a potentially useful therapeutic approach in recipients of kidney transplant to minimise the burden of general immunosuppression. FUNDING: The 7th EU Framework Programme.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Rejeição de Enxerto/prevenção & controle , Terapia de Imunossupressão/métodos , Imunossupressores/uso terapêutico , Transplante de Rim , Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Células Dendríticas/imunologia , Rejeição de Enxerto/imunologia , Humanos , Terapia de Imunossupressão/efeitos adversos , Macrófagos/imunologia , Linfócitos T Reguladores/imunologia
12.
Front Immunol ; 11: 612848, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33603742

RESUMO

Regulatory T cells (Tregs) constitute a small proportion of circulating CD4+ T cells that function to maintain homeostasis and prevent autoimmunity. In light of their powerful immunosuppressive and tolerance-promoting properties, Tregs have become an interesting potential candidate for therapeutic use in conditions such as solid organ transplant or to treat autoimmune and inflammatory conditions. Clinical studies have demonstrated the safety of polyclonally expanded Tregs in graft-versus-host disease, type 1 diabetes, and more recently in renal and liver transplantation. However, Tregs are heterogenous. Recent insights indicate that only a small proportion of Tregs, called T follicular regulatory cells (Tfr) regulate interactions between B cells and T follicular helper (Tfh) cells within the germinal center. Tfr have been mainly described in mouse models due to the challenges of sampling secondary lymphoid organs in humans. However, emerging human studies, characterize Tfr as being CD4+CD25+FOXP3+CXCR5+ cells with different levels of PD-1 and ICOS expression depending on their localization, in the blood or the germinal center. The exact role they play in transplantation remains to be elucidated. However, given the potential ability of these cells to modulate antibody responses to allo-antigens, there is great interest in exploring translational applications in situations where B cell responses need to be regulated. Here, we review the current knowledge of Tfr and the role they play focusing on human diseases and transplantation. We also discuss the potential future applications of Tfr therapy in transplantation and examine the evidence for a role of Tfr in antibody production, acute and chronic rejection and tertiary lymphoid organs. Furthermore, the potential impact of immunosuppression on Tfr will be explored. Based on preclinical research, we will analyse the rationale of Tfr therapy in solid organ transplantation and summarize the different challenges to be overcome before Tfr therapy can be implemented into clinical practice.


Assuntos
Células T Auxiliares Foliculares/imunologia , Linfócitos T Reguladores/imunologia , Animais , Formação de Anticorpos/imunologia , Autoimunidade/imunologia , Linfócitos B/imunologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos
13.
Front Immunol ; 10: 2795, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849973

RESUMO

Cardiovascular diseases (CVD) are the leading cause of mortality worldwide. Atherosclerosis is directly associated with CVD and is characterized by slow progressing inflammation which results in the deposition and accumulation of lipids beneath the endothelial layer in conductance and resistance arteries. Both chronic inflammation and disease progression have been associated with several risk factors, including but not limited to smoking, obesity, diabetes, genetic predisposition, hyperlipidemia, and hypertension. Currently, despite increasing incidence and significant expense on the healthcare system in both western and developing countries, there is no curative therapy for atherosclerosis. Instead patients rely on surgical intervention to avoid or revert vessel occlusion, and pharmacological management of the aforementioned risk factors. However, neither of these approaches completely resolve the underlying inflammatory environment which perpetuates the disease, nor do they result in plaque regression. As such, immunomodulation could provide a novel therapeutic option for atherosclerosis; shifting the balance from proatherogenic to athero-protective. Indeed, regulatory T-cells (Tregs), which constitute 5-10% of all CD4+ T lymphocytes in the peripheral blood, have been shown to be athero-protective and could function as new targets in both CVD and atherosclerosis. This review aims to give a comprehensive overview about the roles of Tregs in CVD, focusing on atherosclerosis.


Assuntos
Aterosclerose/etiologia , Aterosclerose/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Suscetibilidade a Doenças , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Aterosclerose/diagnóstico , Aterosclerose/terapia , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Ensaios Clínicos como Assunto , Metabolismo Energético/efeitos dos fármacos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Imunomodulação/efeitos dos fármacos , Fatores de Risco , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos
14.
Gastroenterology ; 156(6): 1775-1787, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30710527

RESUMO

BACKGROUND & AIMS: Crohn's disease (CD) is characterized by an imbalance of effector and regulatory T cells in the intestinal mucosa. The efficacy of anti-adhesion therapies led us to investigate whether impaired trafficking of T-regulatory (Treg) cells contributes to the pathogenesis of CD. We also investigated whether proper function could be restored to Treg cells by ex vivo expansion in the presence of factors that activate their regulatory activities. METHODS: We measured levels of the integrin α4ß7 on Treg cells isolated from peripheral blood or lamina propria of patients with CD and healthy individuals (controls). Treg cells were expanded ex vivo and incubated with rapamycin with or without agonists of the retinoic acid receptor-α (RARA), and their gene expression profiles were analyzed. We also studied the cells in cytokine challenge, suppression, and flow chamber assays and in SCID mice with human intestinal xenografts. RESULTS: We found that Treg cells from patients with CD express lower levels of the integrin α4ß7 than Treg cells from control patients. The pathway that regulates the expression of integrin subunit α is induced by retinoic acid (RA). Treg cells from patients with CD incubated with rapamycin and an agonist of RARA (RAR568) expressed high levels of integrin α4ß7, as well as CD62L and FOXP3, compared with cells incubated with rapamycin or rapamycin and all-trans retinoic acid. These Treg cells had increased suppressive activities in assays and migrated under conditions of shear flow; they did not produce inflammatory cytokines, and RAR568 had no effect on cell stability or lineage commitment. Fluorescently labeled Treg cells incubated with RAR568 were significantly more likely to traffic to intestinal xenografts than Treg cells expanded in control medium. CONCLUSIONS: Treg cells from patients with CD express lower levels of the integrin α4ß7 than Treg cells from control patients. Incubation of patients' ex vivo expanded Treg cells with rapamycin and an RARA agonist induced expression of α4ß7 and had suppressive and migratory activities in culture and in intestinal xenografts in mice. These cells might be developed for treatment of CD. ClinicalTrials.gov, Number: NCT03185000.


Assuntos
Doença de Crohn/imunologia , Integrinas/metabolismo , Receptor alfa de Ácido Retinoico/agonistas , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Adulto , Animais , Antineoplásicos/farmacologia , Estudos de Casos e Controles , Técnicas de Cultura de Células , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Imunossupressores/farmacologia , Integrinas/genética , Mucosa Intestinal/imunologia , Mucosa Intestinal/transplante , Selectina L/metabolismo , Ativação Linfocitária , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Compostos Orgânicos/farmacologia , Sirolimo/farmacologia , Linfócitos T Reguladores/imunologia , Transcriptoma/efeitos dos fármacos , Tretinoína/farmacologia
15.
Nat Immunol ; 19(12): 1403-1414, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30397350

RESUMO

Repair of tissue damaged during inflammatory processes is key to the return of local homeostasis and restoration of epithelial integrity. Here we describe CD161+ regulatory T (Treg) cells as a distinct, highly suppressive population of Treg cells that mediate wound healing. These Treg cells were enriched in intestinal lamina propria, particularly in Crohn's disease. CD161+ Treg cells had an all-trans retinoic acid (ATRA)-regulated gene signature, and CD161 expression on Treg cells was induced by ATRA, which directly regulated the CD161 gene. CD161 was co-stimulatory, and ligation with the T cell antigen receptor induced cytokines that accelerated the wound healing of intestinal epithelial cells. We identified a transcription-factor network, including BACH2, RORγt, FOSL2, AP-1 and RUNX1, that controlled expression of the wound-healing program, and found a CD161+ Treg cell signature in Crohn's disease mucosa associated with reduced inflammation. These findings identify CD161+ Treg cells as a population involved in controlling the balance between inflammation and epithelial barrier healing in the gut.


Assuntos
Mucosa Intestinal/imunologia , Subfamília B de Receptores Semelhantes a Lectina de Células NK/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Tretinoína/imunologia , Cicatrização/imunologia , Doença de Crohn/imunologia , Humanos
16.
Front Immunol ; 9: 1625, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30079063

RESUMO

Regulatory T cells (Tregs) are essential in maintaining peripheral immunological tolerance by modulating several subsets of the immune system including monocytes. Under inflammatory conditions, monocytes migrate into the tissues, where they differentiate into dendritic cells or tissue-resident macrophages. As a result of their context-dependent plasticity, monocytes have been implicated in the development/progression of graft-vs-host disease (GvHD), autoimmune diseases and allograft rejection. In the last decade, Tregs have been exploited for their use in cell therapy with the aim to induce tolerance after solid organ transplantation and for the treatment of autoimmune diseases and GvHD. To date, safety and feasibility of Treg infusion has been demonstrated; however, many questions of how these cells induce tolerance have been raised and need to be answered. As monocytes constitute the major cellular component in inflamed tissues, we have developed an in vitro model to test how Tregs modulate their phenotype and function. We demonstrated that expanded Tregs can drive monocytes toward an alternatively activated state more efficiently than freshly isolated Tregs. The effect of expanded Tregs on monocytes led to a reduced production of pro-inflammatory cytokines (IL-6 and tumor necrosis factor-α) and NF-κB activation. Furthermore, monocytes co-cultured with expanded Tregs downregulated the expression of co-stimulatory and MHC-class II molecules with a concomitant upregulation of M2 macrophage specific markers, CD206, heme oxygenase-1, and increased interleukin-10 production. Importantly, monocytes co-cultured with expanded Tregs showed a reduced capacity to expand IL-17-producing T cells compared with monocyte cultured with freshly isolated Tregs and conventional T cells. The capacity to decrease the expansion of pro-inflammatory Th-17 was not cytokine mediated but the consequence of their lower expression of the co-stimulatory molecule CD86. Our data suggest that expanded Tregs have the capacity to induce phenotypical and functional changes in monocytes that might be crucial for tolerance induction in transplantation and the prevention/treatment of GvHD and autoimmune diseases.

17.
Mol Ther Methods Clin Dev ; 8: 198-209, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29552576

RESUMO

The concept of regulatory T cell (Treg)-based immunotherapy has enormous potential for facilitating tolerance in autoimmunity and transplantation. Clinical translation of Treg cell therapy requires production processes that satisfy the rigors of Good Manufacturing Practice (GMP) standards. In this regard, we report our findings on the implementation of a robust GMP compliant process for the ex vivo expansion of clinical grade Tregs, demonstrating the feasibility of this developed process for the manufacture of a final product for clinical application. This Treg isolation procedure ensured the selection of a pure Treg population that underwent a 300-fold expansion after 36 days of culture, while maintaining a purity of more than 75% CD4+CD25+FOXP3+ cells and a suppressive function of above 80%. Furthermore, we report the successful cryopreservation of the final product, demonstrating the maintenance of phenotype and function. The process outlined in this manuscript has been implemented in the ONE study, a multicenter phase I/IIa clinical trial in which cellular therapy is investigated in renal transplantation.

18.
Front Immunol ; 9: 354, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29535728

RESUMO

Solid organ transplantation is the treatment of choice for patients with end-stage organ dysfunction. Despite improvements in short-term outcome, long-term outcome is suboptimal due to the increased morbidity and mortality associated with the toxicity of immunosuppressive regimens and chronic rejection (1-5). As such, the attention of the transplant community has focused on the development of novel therapeutic strategies to achieve allograft tolerance, a state whereby the immune system of the recipient can be re-educated to accept the allograft, averting the need for long-term immunosuppression. Indeed, reports of "operational" tolerance, whereby the recipient is off all immunosuppressive drugs and maintaining good graft function, is well documented in the literature for both liver and kidney transplantations (6-8). However, this phenomenon is rare and in the setting of liver transplantation has been shown to occur late after transplantation, with the majority of patients maintained on life-long immunosupression to prevent allograft rejection (9). As such, significant research has focused on immune regulation in the context of organ transplantation with regulatory T cells (Tregs) identified as cells holding considerable promise in this endeavor. This review will provide a brief introduction to human Tregs, their phenotypic and functional characterization and focuses on our experience to date at the clinical translation of Treg immunotherapy in the setting of solid organ transplantation.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Rejeição de Enxerto/terapia , Imunoterapia Adotiva/métodos , Transplante de Órgãos , Linfócitos T Reguladores/imunologia , Aloenxertos/imunologia , Animais , Humanos , Linfócitos T Reguladores/transplante , Pesquisa Translacional Biomédica , Tolerância ao Transplante
20.
Gut ; 65(4): 584-94, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25715355

RESUMO

BACKGROUND AND AIM: Thymus-derived regulatory T cells (Tregs) mediate dominant peripheral tolerance and treat experimental colitis. Tregs can be expanded from patient blood and were safely used in recent phase 1 studies in graft versus host disease and type 1 diabetes. Treg cell therapy is also conceptually attractive for Crohn's disease (CD). However, barriers exist to this approach. The stability of Tregs expanded from Crohn's blood is unknown. The potential for adoptively transferred Tregs to express interleukin-17 and exacerbate Crohn's lesions is of concern. Mucosal T cells are resistant to Treg-mediated suppression in active CD. The capacity for expanded Tregs to home to gut and lymphoid tissue is unknown. METHODS: To define the optimum population for Treg cell therapy in CD, CD4(+)CD25(+)CD127(lo)CD45RA(+) and CD4(+)CD25(+)CD127(lo)CD45RA(-) Treg subsets were isolated from patients' blood and expanded in vitro using a workflow that can be readily transferred to a good manufacturing practice background. RESULTS: Tregs can be expanded from the blood of patients with CD to potential target dose within 22-24 days. Expanded CD45RA(+) Tregs have an epigenetically stable FOXP3 locus and do not convert to a Th17 phenotype in vitro, in contrast to CD45RA(-) Tregs. CD45RA(+) Tregs highly express α4ß7 integrin, CD62L and CC motif receptor 7 (CCR7). CD45RA(+) Tregs also home to human small bowel in a C.B-17 severe combined immune deficiency (SCID) xenotransplant model. Importantly, in vitro expansion enhances the suppressive ability of CD45RA(+) Tregs. These cells also suppress activation of lamina propria and mesenteric lymph node lymphocytes isolated from inflamed Crohn's mucosa. CONCLUSIONS: CD4(+)CD25(+)CD127(lo)CD45RA(+) Tregs may be the most appropriate population from which to expand Tregs for autologous Treg therapy for CD, paving the way for future clinical trials.


Assuntos
Transferência Adotiva , Terapia Baseada em Transplante de Células e Tecidos/métodos , Doença de Crohn/terapia , Linfócitos T Reguladores/imunologia , Animais , Doença de Crohn/imunologia , Metilação de DNA , Ensaio de Imunoadsorção Enzimática , Fatores de Transcrição Forkhead/genética , Humanos , Técnicas In Vitro , Interleucina-17/metabolismo , Antígenos Comuns de Leucócito/imunologia , Camundongos , Camundongos SCID , Fenótipo , Reação em Cadeia da Polimerase , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...