Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 2(6): 524-9, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11415986

RESUMO

Recent studies identified YidC as a novel membrane factor that may play a key role in membrane insertion of inner membrane proteins (IMPs), both in conjunction with the Sec-translocase and as a separate entity. Here, we show that the type II IMP FtsQ requires both the translocase and, to a lesser extent, YidC in vivo. Using photo-crosslinking we demonstrate that the transmembrane (TM) domain of the nascent IMP FtsQ inserts into the membrane close to SecY and lipids, and moves to a combined YidC/lipid environment upon elongation. These data are consistent with a crucial role for YidC in the lateral transfer of TM domains from the Sec translocase into the lipid bilayer.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Membrana Celular/enzimologia , Proteínas de Escherichia coli , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Membrana Celular/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Metabolismo dos Lipídeos , Modelos Biológicos , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Canais de Translocação SEC , Proteínas SecA
2.
FEBS Lett ; 476(3): 229-33, 2000 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-10913619

RESUMO

Targeting and assembly of the Escherichia coli inner membrane protein leader peptidase (Lep) was studied using a homologous in vitro targeting/translocation assay. Assembly of full-length Lep was efficient in the co-translational presence of membrane vesicles and hardly occurred when membranes were added post-translationally. This is consistent with the signal recognition particle-dependent targeting of Lep. Crosslinking experiments showed that the hydrophilic region P1 of nascent membrane-inserted Lep 100-mer was in the vicinity of SecA and SecY, whereas the first transmembrane domain H1 was in the vicinity of YidC. These results suggested that YidC, together with the Sec translocase, functions in the assembly of Lep. YidC might be a more generic component in the assembly of inner membrane proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Serina Endopeptidases/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Reagentes de Ligações Cruzadas , Escherichia coli/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Canais de Translocação SEC , Proteínas SecA , Serina Endopeptidases/química , Serina Endopeptidases/genética , Partícula de Reconhecimento de Sinal
3.
EMBO J ; 19(4): 542-9, 2000 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-10675323

RESUMO

In Escherichia coli, both secretory and inner membrane proteins initially are targeted to the core SecYEG inner membrane translocase. Previous work has also identified the peripherally associated SecA protein as well as the SecD, SecF and YajC inner membrane proteins as components of the translocase. Here, we use a cross-linking approach to show that hydrophilic portions of a co-translationally targeted inner membrane protein (FtsQ) are close to SecA and SecY, suggesting that insertion takes place at the SecA/Y interface. The hydrophobic FtsQ signal anchor sequence contacts both lipids and a novel 60 kDa translocase-associated component that we identify as YidC. YidC is homologous to Saccharomyces cerevisiae Oxa1p, which has been shown to function in a novel export pathway at the mitochondrial inner membrane. We propose that YidC is involved in the insertion of hydrophobic sequences into the lipid bilayer after initial recognition by the SecAYEG translocase.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas de Transporte/genética , Complexo IV da Cadeia de Transporte de Elétrons , Escherichia coli/genética , Proteínas Fúngicas/metabolismo , Metabolismo dos Lipídeos , Substâncias Macromoleculares , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Modelos Biológicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Canais de Translocação SEC , Saccharomyces cerevisiae/metabolismo , Proteínas SecA
4.
J Biol Chem ; 274(42): 29883-8, 1999 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-10514469

RESUMO

In Escherichia coli, signal recognition particle (SRP)-dependent targeting of inner membrane proteins has been described. In vitro cross-linking studies have demonstrated that short nascent chains exposing a highly hydrophobic targeting signal interact with the SRP. This SRP, assisted by its receptor, FtsY, mediates the transfer to a common translocation site in the inner membrane that contains SecA, SecG, and SecY. Here we describe a further in vitro reconstitution of SRP-mediated membrane insertion in which purified ribosome-nascent chain-SRP complexes are targeted to the purified SecYEG complex contained in proteoliposomes in a process that requires the SRP-receptor FtsY and GTP. We found that in this system SecA and ATP are dispensable for both the transfer of the nascent inner membrane protein FtsQ to SecY and its stable membrane insertion. Release of the SRP from nascent FtsQ also occurred in the absence of SecYEG complex indicating a functional interaction of FtsY with lipids. These data suggest that SRP/FtsY and SecB/SecA constitute distinct targeting routes.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Partícula de Reconhecimento de Sinal/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Guanosina Trifosfato/metabolismo , Proteolipídeos , Receptores Citoplasmáticos e Nucleares/metabolismo , Canais de Translocação SEC , Proteínas SecA
5.
Proc Natl Acad Sci U S A ; 95(25): 14646-51, 1998 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-9843943

RESUMO

Assembly of several inner membrane proteins-leader peptidase (Lep), a Lep derivative (Lep-inv) that inserts with an inverted topology compared with the wild-type protein, the phage M13 procoat protein, and a procoat derivative (H1-procoat) with the hydrophobic core of the signal peptide replaced by a stretch from the first transmembrane segment in Lep-has been studied in vitro and in Escherichia coli strains that are conditional for the expression of either the 54 homologue (Ffh) or 4.5S RNA, which are the two components of the E. coli signal recognition particle (SRP), or SecE, an essential core component of the E. coli preprotein translocase. Membrane insertion has also been tested in a SecB null strain. Lep, Lep-inv, and H1-procoat require SRP for correct assembly into the inner membrane; in contrast, we find that wild-type procoat does not. Lep and, surprisingly, Lep-inv and H1-procoat fail to insert properly when SecE is depleted, whereas insertion of wild-type procoat is unaffected under these conditions. None of the proteins depend on SecB for assembly. These observations indicate that inner membrane proteins can assemble either by a mechanism in which SRP delivers the protein at the preprotein translocase or by what appears to be a direct integration into the lipid bilayer. The observed change in assembly mechanism when the hydrophobicity of the procoat signal peptide is increased demonstrates that the assembly of an inner membrane protein can be rerouted between different pathways.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Canais de Translocação SEC , Transdução de Sinais
6.
EMBO J ; 17(9): 2504-12, 1998 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-9564033

RESUMO

Two distinct protein targeting pathways can direct proteins to the Escherichia coli inner membrane. The Sec pathway involves the cytosolic chaperone SecB that binds to the mature region of pre-proteins. SecB targets the pre-protein to SecA that mediates pre-protein translocation through the SecYEG translocon. The SRP pathway is probably used primarily for the targeting and assembly of inner membrane proteins. It involves the signal recognition particle (SRP) that interacts with the hydrophobic targeting signal of nascent proteins. By using a protein cross-linking approach, we demonstrate here that the SRP pathway delivers nascent inner membrane proteins at the membrane. The SRP receptor FtsY, GTP and inner membranes are required for release of the nascent proteins from the SRP. Upon release of the SRP at the membrane, the targeted nascent proteins insert into a translocon that contains at least SecA, SecY and SecG. Hence, as appears to be the case for several other translocation systems, multiple targeting mechanisms deliver a variety of precursor proteins to a common membrane translocation complex of the E.coli inner membrane.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Glicoproteínas de Membrana , Proteínas de Membrana Transportadoras , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/metabolismo , Membrana Celular/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo , Canais de Translocação SEC , Proteínas SecA
7.
Yeast ; 12(10): 953-63, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8873449

RESUMO

We compared the ability of signal sequences from various Bacillus or yeast secreted proteins to direct Bacillus subtilis levansucrase into the secretion pathway of the yeast Saccharomyces cerevisiae. The efficiency of these sequences correlated with the overall hydrophobicity of their h-domain and was independent of their origin. Furthermore, the net charge of the proximal protein sequence downstream from the signal sequence contributed to the competence of the heterologous proteins to be secreted by yeast. Modification of this net charge allowed the protein to be translocated under the control of the yeast invertase signal sequence. Moreover, glycosylation of levansucrase did not modify significantly the fructosyl polymerase activity.


Assuntos
Bacillus subtilis/enzimologia , Hexosiltransferases/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Saccharomyces cerevisiae/metabolismo , Fosfatase Ácida/genética , Sequência de Aminoácidos , Bacillus/enzimologia , Transporte Biológico , Membrana Celular/enzimologia , Citoplasma/enzimologia , Frutanos/biossíntese , Glicosídeo Hidrolases/genética , Glicosilação/efeitos dos fármacos , Hexosiltransferases/genética , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/enzimologia , Esferoplastos/enzimologia , Tunicamicina/farmacologia , alfa-Amilases/genética , beta-Frutofuranosidase
8.
FEBS Lett ; 360(3): 307-9, 1995 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-7883053

RESUMO

The reversible folding-unfolding transition of mature and precursor forms of Bacillus subtilis levansucrase were compared under physiological conditions of pH and temperature. The time constant of the folding reaction was not modified by the presence of the signal sequence and the precursor in the native form was slightly more resistant to the denaturing action of urea. However, the folding pathway could be different for each protein since a domain of the mature levansucrase underwent an independent transition which is not observed during the renaturation process of prelevansucrase.


Assuntos
Bacillus subtilis/enzimologia , Hexosiltransferases/química , Proteínas de Bactérias/química , Concentração de Íons de Hidrogênio , Desnaturação Proteica , Dobramento de Proteína , Subtilisinas/farmacologia , Temperatura
9.
Yeast ; 10(1): 29-38, 1994 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8203150

RESUMO

Levansucrase, a Bacillus subtilis extracellular enzyme, was not secreted in the culture medium when produced in yeast. The protein accumulated inside the cell in its precursor form which represented 0.3% of total proteins. The absence of any post-translational modifications, such as signal sequence cleavage or addition of N-linked sugars, indicated that this protein did not enter the reticulum secretion pathway. Direct observation of the cells by confocal laser scanning microscopy showed that levansucrase was associated with the cytoplasmic membrane. Subcellular fractionation experiments revealed that levansucrase precursor form is associated with membranes through weak ionic interactions. The purified precursor displayed the same catalytic properties as levansucrase secreted by B. subtilis. Thus yeast could be used as a source of levansucrase precursor allowing its isolation as a pure form on a milligram scale.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Hexosiltransferases/metabolismo , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Transporte Biológico , Membrana Celular/metabolismo , Espaço Extracelular , Dados de Sequência Molecular , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA