Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35159064

RESUMO

Protein kinase C iota (PKCι) functions as a bonafide human oncogene in lung and ovarian cancer and is required for KrasG12D-mediated lung cancer initiation and progression. PKCι expression is required for pancreatic cancer cell growth and maintenance of the transformed phenotype; however, nothing is known about the role of PKCι in pancreas development or pancreatic tumorigenesis. In this study, we investigated the effect of pancreas-specific ablation of PKCι expression on pancreatic cellular homeostasis, susceptibility to pancreatitis, and KrasG12D-mediated pancreatic cancer development. Knockout of pancreatic Prkci significantly increased pancreatic immune cell infiltration, acinar cell DNA damage, and apoptosis, but reduced sensitivity to caerulein-induced pancreatitis. Prkci-ablated pancreatic acinar cells exhibited P62 aggregation and a loss of autophagic vesicles. Loss of pancreatic Prkci promoted KrasG12D-mediated pancreatic intraepithelial neoplasia formation but blocked progression to adenocarcinoma, consistent with disruption of autophagy. Our results reveal a novel promotive role for PKCι in pancreatic epithelial cell autophagy and pancreatic cancer progression.

2.
Oncotarget ; 6(17): 15297-310, 2015 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-25915428

RESUMO

Pancreatic cancer is highly resistant to current chemotherapies. Identification of the critical signaling pathways that mediate pancreatic cancer transformed growth is necessary for the development of more effective therapeutic treatments. Recently, we demonstrated that protein kinase C iota (PKCι) and zeta (PKCζ) promote pancreatic cancer transformed growth and invasion, by activating Rac1→ERK and STAT3 signaling pathways, respectively. However, a key question is whether PKCι and PKCζ play redundant (or non-redundant) roles in pancreatic cancer cell transformed growth. Here we describe the novel observations that 1) PKCι and PKCζ are non-redundant in the context of the transformed growth of pancreatic cancer cells; 2) a gold-containing small molecule known to disrupt the PKCι/Par6 interaction, aurothiomalate, also disrupts PKCζ/Par6 interaction; 3) aurothiomalate inhibits downstream signaling of both PKCι and PKCζ, and blocks transformed growth of pancreatic cancer cells in vitro; and 4) aurothiomalate inhibits pancreatic cancer tumor growth and metastasis in vivo. Taken together, these data provide convincing evidence that an inhibitor of atypical PKC signaling inhibits two key oncogenic signaling pathways, driven non-redundantly by PKCι and PKCζ, to significantly reduce tumor growth and metastasis. Our results demonstrate that inhibition of atypical PKC signaling is a promising therapeutic strategy to treat pancreatic cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tiomalato Sódico de Ouro/farmacologia , Isoenzimas/antagonistas & inibidores , Neoplasias Pancreáticas/patologia , Proteína Quinase C/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Humanos , Isoenzimas/genética , Invasividade Neoplásica/patologia , Ligação Proteica , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais/efeitos dos fármacos
3.
PLoS One ; 8(8): e72061, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24015205

RESUMO

Pancreatic cancer is a very aggressive disease with few therapeutic options. In this study, we investigate the role of protein kinase C zeta (PKCζ) in pancreatic cancer cells. PKCζ has been shown to act as either a tumor suppressor or tumor promoter depending upon the cellular context. We find that PKCζ expression is either maintained or elevated in primary human pancreatic tumors, but is never lost, consistent with PKCζ playing a promotive role in the pancreatic cancer phenotype. Genetic inhibition of PKCζ reduced adherent growth, cell survival and anchorage-independent growth of human pancreatic cancer cells in vitro. Furthermore, PKCζ inhibition reduced orthotopic tumor size in vivo by inhibiting tumor cell proliferation and increasing tumor necrosis. In addition, PKCζ inhibition reduced tumor metastases in vivo, and caused a corresponding reduction in pancreatic cancer cell invasion in vitro. Signal transducer and activator of transcription 3 (STAT3) is often constitutively active in pancreatic cancer, and plays an important role in pancreatic cancer cell survival and metastasis. Interestingly, inhibition of PKCζ significantly reduced constitutive STAT3 activation in pancreatic cancer cells in vitro and in vivo. Pharmacologic inhibition of STAT3 mimicked the phenotype of PKCζ inhibition, and expression of a constitutively active STAT3 construct rescued the transformed phenotype in PKCζ-deficient cells. We conclude that PKCζ is required for pancreatic cancer cell transformed growth and invasion in vitro and tumorigenesis in vivo, and that STAT3 is an important downstream mediator of the pro-carcinogenic effects of PKCζ in pancreatic cancer cells.


Assuntos
Adenocarcinoma/enzimologia , Neoplasias Pancreáticas/enzimologia , Proteína Quinase C/fisiologia , Fator de Transcrição STAT3/metabolismo , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Nus , Invasividade Neoplásica , Transplante de Neoplasias , Neoplasias Pancreáticas/patologia , Fenótipo , Fosforilação , Processamento de Proteína Pós-Traducional , RNA Interferente Pequeno/genética , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...