Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Diabetol ; 59(7): 911-919, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35397650

RESUMO

AIMS: Data about sleep quality and quantity are not available in patients with type 1 diabetes (T1D) using intermittently scanned continuous glucose monitoring (isCGM). We questioned whether the isCGM with alarms could fragment sleep in patients and parents, compared to isCGM without alarms. METHODS: A prospective, observational study including 47 child-adolescents with T1D who had experience with isCGM without alarms (Freestyle Libre 1-FSL1). They were asked to wear the isCGM with alarms (Freestyle Libre 2-FSL2) for 14 days. Patients enrolled and their caregiver (s), during a 14 day period with FSL1 and the following 14 days with FSL2, completed psychosocial and sleep-related questionnaires. Furthermore they wore an actigraph that was downloaded to a web platform and processed by the validated and certified algorithm "Dormi®." RESULTS: By the switch to the alarmed FSL2 we found about a 5% increase in Time In Range (from 62.5 to 67.8%), a reduction in time spent in hypoglycemia, number of weekly hypoglycemic events, and coefficient of variation. We did not find significant differences in sleep parameters in patients and their parents; therefore, alarms did not worsen the duration and quality of sleep. A significant improvement in the Quality of Life was perceived by parents using FSL2. CONCLUSIONS: Introduction of alarms in isCGM systems gives, in the short term, an improvement in metabolic control in terms of time in range and reduction in hypoglycemia, without worsening duration and quality of sleep, measured by actigraphy, in children-adolescent and their parents.


Assuntos
Diabetes Mellitus Tipo 1 , Hipoglicemia , Adolescente , Glicemia/metabolismo , Automonitorização da Glicemia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Hipoglicemia/etiologia , Hipoglicemia/prevenção & controle , Hipoglicemiantes , Estudos Prospectivos , Qualidade de Vida , Sono
2.
Front Physiol ; 12: 678974, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305639

RESUMO

Duchenne muscular dystrophy (DMD) is a rare genetic disease due to dystrophin gene mutations which cause progressive weakness and muscle wasting. Circadian rhythm coordinates biological processes with the 24-h cycle and it plays a key role in maintaining muscle functions, both in animal models and in humans. We explored expression profiles of circadian circuit master genes both in Duchenne muscular dystrophy skeletal muscle and in its animal model, the mdx mouse. We designed a customized, mouse-specific Fluidic-Card-TaqMan-based assay (Fluid-CIRC) containing thirty-two genes related to circadian rhythm and muscle regeneration and analyzed gastrocnemius and tibialis anterior muscles from both unexercised and exercised mdx mice. Based on this first analysis, we prioritized the 7 most deregulated genes in mdx mice and tested their expression in skeletal muscle biopsies from 10 Duchenne patients. We found that CSNK1E, SIRT1, and MYOG are upregulated in DMD patient biopsies, consistent with the mdx data. We also demonstrated that their proteins are detectable and measurable in the DMD patients' plasma. We suggest that CSNK1E, SIRT1, and MYOG might represent exploratory circadian biomarkers in DMD.

3.
Eur J Hum Genet ; 28(6): 815-825, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31896777

RESUMO

Duchenne muscular dystrophy (DMD) is caused by pathogenic variants in the DMD gene leading to the lack of dystrophin. Variability in the disease course suggests that other factors influence disease progression. With this study we aimed to identify genetic factors that may account for some of the variability in the clinical presentation. We compared whole-exome sequencing (WES) data in 27 DMD patients with extreme phenotypes to identify candidate variants that could affect disease progression. Validation of the candidate SNPs was performed in two independent cohorts including 301 (BIO-NMD cohort) and 109 (CINRG cohort of European ancestry) DMD patients, respectively. Variants in the Tctex1 domain containing 1 (TCTEX1D1) gene on chromosome 1 were associated with age of ambulation loss. The minor alleles of two independent variants, known to affect TCTEX1D1 coding sequence and induce skipping of its exon 4, were associated with earlier loss of ambulation. Our data show that disease progression of DMD is affected by a new locus on chromosome 1 and demonstrate the possibility to identify genetic modifiers in rare diseases by studying WES data in patients with extreme phenotypes followed by multiple layers of validation.


Assuntos
Genes Modificadores , Distrofia Muscular de Duchenne/genética , Adolescente , Criança , Progressão da Doença , Humanos , Masculino , Distrofia Muscular de Duchenne/patologia , Fenótipo , Polimorfismo de Nucleotídeo Único
4.
Neuromuscul Disord ; 29(10): 776-785, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31558336

RESUMO

We describe a novel ATP7A gene mutation associated with distal motor neuropathy, mild connective tissue abnormalities and autonomic disturbances. Next-generation sequencing analysis of a lower-motor neuron diseases gene panel was performed in two sibs presenting with distal motor neuropathy plus an autonomic dysfunction, which main manifestations were retrograde ejaculation, diarrhea and hyperhydrosis. Probands underwent dysmorphological, neurological, electrophysiological as well as biochemical evaluations and somatic and autonomic innervation studies on skin biopsies. A novel missense mutation (p.A991D) was identified in the X-linked ATP7A gene, segregating in both brothers and inherited from their healthy mother. Biochemical studies on patients' blood samples showed reduced serum copper and ceruloplasmin levels. Clinical and neurophysiological evaluation documented dysautonomic signs. Quantitative evaluation of skin innervation disclosed a small fiber neuropathy with prevalent autonomic involvement. Mutations in the ATP7A gene, encoding for a copper-transporting ATPase, have been associated with the severe infantile neurodegenerative Menkes disease and in its milder variant, the Occipital Horn Syndrome. Only two ATP7A mutations were previously reported as causing, a pure axonal distal motor neuropathy (dHMN-SMAX3). The phenotype we report represents a further example of this rare genotype-phenotype correlation and highlights the possible occurrence in SMAX3 of autonomic disturbances, as described for Menkes disease and Occipital Horn Syndrome.


Assuntos
ATPases Transportadoras de Cobre/genética , Doença dos Neurônios Motores/genética , Atrofia Muscular Espinal/genética , Mutação/genética , Adenosina Trifosfatases/metabolismo , Idoso , Cútis Laxa/genética , Cútis Laxa/patologia , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/patologia , Estudos de Associação Genética/métodos , Humanos , Masculino , Síndrome dos Cabelos Torcidos/diagnóstico , Síndrome dos Cabelos Torcidos/genética , Pessoa de Meia-Idade , Doença dos Neurônios Motores/diagnóstico , Atrofia Muscular Espinal/diagnóstico
5.
Front Genet ; 9: 723, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30740127

RESUMO

Only a few genes involved in teeth development and morphology are known to be responsible for tooth abnormalities in Mendelian-inherited diseases. We studied an inbred family of Pakistani origin in which two first-cousin born brothers are affected by early tooth loss with peculiar teeth abnormalities characterized by the absence of cementum formation. Whole exome sequencing revealed a H2665L homozygous sequence variant in the VCAN gene. Dominant splicing mutations in VCAN are known to cause Wagner syndrome or vitreoretinopathy. We explored teeth morphology in these two patients, while versican expression was assessed by western blot analysis. Early signs of vitreoretinopathy were found in the elder brother while the parents were completely negative. Our findings suggest that the homozygous recessive H2665L missense sequence variant impairs the normal morphology of the teeth roots via loss of cementum synthesis, and is also associated with early onset, recessive, Wagner syndrome, thus expanding both the phenotype mutation scenario and the inheritance mode of VCAN mutations.

6.
Biochim Biophys Acta Gene Regul Mech ; 1860(11): 1138-1147, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28867298

RESUMO

The dystrophin gene (DMD) is the largest gene in the human genome, mapping on the Xp21 chromosome locus. It spans 2.2Mb and accounts for approximately 0,1% of the entire human genome. Mutations in this gene cause Duchenne and Becker Muscular Dystrophy, X-linked Dilated Cardiomyopathy, and other milder muscle phenotypes. Beside the remarkable number of reports describing dystrophin gene expression and the pathogenic consequences of the gene mutations in dystrophinopathies, the full scenario of the DMD transcription dynamics remains however, poorly understood. Considering that the full transcription of the DMD gene requires about 16h, we have investigated the activity of RNA Polymerase II along the entire DMD locus within the context of specific chromatin modifications using a variety of chromatin-based techniques. Our results unveil a surprisingly powerful processivity of the RNA polymerase II along the entire 2.2Mb of the DMD locus with just one site of pausing around intron 52. We also discovered epigenetic marks highlighting the existence of four novel cis­DNA elements, two of which, located within intron 34 and exon 45, appear to govern the architecture of the DMD chromatin with implications on the expression levels of the muscle dystrophin mRNA. Overall, our findings provide a global view on how the entire DMD locus is dynamically transcribed by the RNA pol II and shed light on the mechanisms involved in dystrophin gene expression control, which can positively impact on the optimization of the novel ongoing therapeutic strategies for dystrophinopathies.


Assuntos
Distrofina/genética , Distrofina/metabolismo , Músculo Esquelético/metabolismo , Sequências Reguladoras de Ácido Nucleico , Adolescente , Adulto , Animais , Células Cultivadas , Criança , Pré-Escolar , Epigênese Genética/fisiologia , Regulação da Expressão Gênica , Células HeLa , Humanos , Camundongos , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Mutação , Adulto Jovem
7.
Neuromuscul Disord ; 27(9): 861-872, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28624464

RESUMO

Dominant mutations in STIM1 are a cause of three allelic conditions: tubular aggregate myopathy, Stormorken syndrome (a complex phenotype including myopathy, hyposplenism, hypocalcaemia and bleeding diathesis), and a platelet dysfunction disorder, York platelet syndrome. Previous reports have suggested a genotype-phenotype correlation with mutations in the N-terminal EF-hand domain associated with tubular aggregate myopathy, and a common mutation at p.R304W in a coiled coil domain associated with Stormorken syndrome. In this study individuals with STIM1 variants were identified by exome sequencing or STIM1 direct sequencing, and assessed for neuromuscular, haematological and biochemical evidence of the allelic disorders of STIM1. STIM1 mutations were investigated by fibroblast calcium imaging and 3D modelling. Six individuals with STIM1 mutations, including two novel mutations (c.262A>G (p.S88G) and c.911G>A (p.R304Q)), were identified. Extra-neuromuscular symptoms including thrombocytopenia, platelet dysfunction, hypocalcaemia or hyposplenism were present in 5/6 patients with mutations in both the EF-hand and CC domains. 3/6 patients had psychiatric disorders, not previously reported in STIM1 disease. Review of published STIM1 patients (n = 49) confirmed that neuromuscular symptoms are present in most patients. We conclude that the phenotype associated with activating STIM1 mutations frequently includes extra-neuromuscular features such as hypocalcaemia, hypo-/asplenia and platelet dysfunction regardless of mutation domain.


Assuntos
Transtornos Plaquetários/genética , Dislexia/genética , Estudos de Associação Genética , Ictiose/genética , Transtornos de Enxaqueca/genética , Miose/genética , Mutação/genética , Miopatias Congênitas Estruturais/genética , Proteínas de Neoplasias/genética , Baço/anormalidades , Molécula 1 de Interação Estromal/genética , Adulto , Cálcio/metabolismo , Técnicas de Cultura de Células , Análise Mutacional de DNA , Eritrócitos Anormais , Saúde da Família , Feminino , Fibroblastos/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade , Modelos Moleculares , Fadiga Muscular/genética , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , NAD/metabolismo
8.
Hum Mutat ; 38(8): 970-977, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28544275

RESUMO

We report here the first families carrying recessive variants in the MSTO1 gene: compound heterozygous mutations were identified in two sisters and in an unrelated singleton case, who presented a multisystem complex phenotype mainly characterized by myopathy and cerebellar ataxia. Human MSTO1 is a poorly studied protein, suggested to have mitochondrial localization and to regulate morphology and distribution of mitochondria. As for other mutations affecting genes involved in mitochondrial dynamics, no biochemical defects typical of mitochondrial disorders were reported. Studies in patients' fibroblasts revealed that MSTO1 protein levels were strongly reduced, the mitochondrial network was fragmented, and the fusion events among mitochondria were decreased, confirming the deleterious effect of the identified variants and the role of MSTO1 in modulating mitochondrial dynamics. We also found that MSTO1 is mainly a cytosolic protein. These findings indicate recessive mutations in MSTO1 as a new cause for inherited neuromuscular disorders with multisystem features.


Assuntos
Ataxia/genética , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Dinâmica Mitocondrial/fisiologia , Doenças Musculares/genética , Mutação/genética , Ataxia/etiologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Dinâmica Mitocondrial/genética , Doenças Musculares/etiologia
9.
Hum Gene Ther ; 27(10): 772-783, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27530229

RESUMO

A ready source of autologous myogenic cells is of vital importance for drug screening and functional genetic studies in Duchenne muscular dystrophy (DMD), a rare disease caused by a variety of dystrophin gene mutations. As stem cells (SCs) can be easily and noninvasively obtained from urine specimens, we set out to determine whether they could be myogenically induced and useful in DMD research. To this end, we isolated stem cells from the urine of two healthy donors and from one patient with DMD, and performed surface marker characterization, myogenic differentiation (MyoD), and then transfection with antisense oligoribonucleotides to test for exon skipping and protein restoration. We demonstrated that native urine-derived stem cells express the full-length dystrophin transcript, and that the dystrophin mutation was retained in the cells of the patient with DMD, although the dystrophin protein was detected solely in control cells after myogenic transformation according to the phenotype. Notably, we also showed that treatment with antisense oligoribonucleotide against dystrophin exon 44 induced skipping in both native and MyoD-transformed urine-derived stem cells in DMD, with a therapeutic transcript-reframing effect, as well as visible protein restoration in the latter. Hence MyoD-transformed cells may be a good myogenic model for studying dystrophin gene expression, and native urine stem cells could be used to study the dystrophin transcript, and both diagnostic procedures and splicing modulation therapies in both patients and control subjects, without invasive and costly collection methods. New, bankable bioproducts from urine stem cells, useful for prescreening studies and therapeutic applications alike, are also foreseeable after further, more in-depth characterization.


Assuntos
Distrofina/genética , Terapia Genética , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos Antissenso/uso terapêutico , Éxons/genética , Genótipo , Humanos , Desenvolvimento Muscular/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Oligonucleotídeos Antissenso/genética , Fenótipo , Células-Tronco/metabolismo
10.
J Cardiovasc Dev Dis ; 3(2)2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27347491

RESUMO

The Popeye domain containing (POPDC) genes encode a novel class of cAMP effector proteins, which are abundantly expressed in heart and skeletal muscle. Here we will review their role in striated muscle as deduced from work in cell and animal models and the recent analysis of patients carrying a missense mutation in POPDC1. Evidence suggests that POPDC proteins control membrane trafficking of interacting proteins. Furthermore, we will discuss the current catalogue of established protein-protein interactions. In recent years, the number of POPDC-interacting proteins is rising and currently includes ion channels (TREK-1), sarcolemma-associated proteins serving functions in mechanical stability (Dystrophin), compartmentalization (Caveolin 3), scaffolding (ZO-1), trafficking (NDRG4, VAMP2/3) and repair (Dysferlin), or acting as a guanine nucleotide exchange factor for Rho-family GTPases (GEFT). Recent evidence suggests that POPDC proteins might also control the cellular level of the nuclear proto-oncoprotein c-Myc. These data suggests that this family of cAMP-binding proteins probably serves multiple roles in striated muscle.

11.
J Cell Sci ; 129(8): 1671-84, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26945058

RESUMO

Collagen VI myopathies are genetic disorders caused by mutations in collagen 6 A1, A2 and A3 genes, ranging from the severe Ullrich congenital muscular dystrophy to the milder Bethlem myopathy, which is recapitulated by collagen-VI-null (Col6a1(-/-)) mice. Abnormalities in mitochondria and autophagic pathway have been proposed as pathogenic causes of collagen VI myopathies, but the link between collagen VI defects and these metabolic circuits remains unknown. To unravel the expression profiling perturbation in muscles with collagen VI myopathies, we performed a deep RNA profiling in both Col6a1(-/-)mice and patients with collagen VI pathology. The interactome map identified common pathways suggesting a previously undetected connection between circadian genes and collagen VI pathology. Intriguingly, Bmal1(-/-)(also known as Arntl) mice, a well-characterized model displaying arrhythmic circadian rhythms, showed profound deregulation of the collagen VI pathway and of autophagy-related genes. The involvement of circadian rhythms in collagen VI myopathies is new and links autophagy and mitochondrial abnormalities. It also opens new avenues for therapies of hereditary myopathies to modulate the molecular clock or potential gene-environment interactions that might modify muscle damage pathogenesis.


Assuntos
Fatores de Transcrição ARNTL/genética , Relógios Circadianos/fisiologia , Colágeno Tipo VI/genética , Contratura/genética , Mitocôndrias/fisiologia , Distrofias Musculares/congênito , Mutação/genética , Esclerose/genética , Animais , Autofagia/genética , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Análise em Microsséries , Distrofias Musculares/genética , RNA/análise
12.
J Clin Invest ; 126(1): 239-53, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26642364

RESUMO

The Popeye domain-containing 1 (POPDC1) gene encodes a plasma membrane-localized cAMP-binding protein that is abundantly expressed in striated muscle. In animal models, POPDC1 is an essential regulator of structure and function of cardiac and skeletal muscle; however, POPDC1 mutations have not been associated with human cardiac and muscular diseases. Here, we have described a homozygous missense variant (c.602C>T, p.S201F) in POPDC1, identified by whole-exome sequencing, in a family of 4 with cardiac arrhythmia and limb-girdle muscular dystrophy (LGMD). This allele was absent in known databases and segregated with the pathological phenotype in this family. We did not find the allele in a further screen of 104 patients with a similar phenotype, suggesting this mutation to be family specific. Compared with WT protein, POPDC1(S201F) displayed a 50% reduction in cAMP affinity, and in skeletal muscle from patients, both POPDC1(S201F) and WT POPDC2 displayed impaired membrane trafficking. Forced expression of POPDC1(S201F) in a murine cardiac muscle cell line (HL-1) increased hyperpolarization and upstroke velocity of the action potential. In zebrafish, expression of the homologous mutation (popdc1(S191F)) caused heart and skeletal muscle phenotypes that resembled those observed in patients. Our study therefore identifies POPDC1 as a disease gene causing a very rare autosomal recessive cardiac arrhythmia and LGMD, expanding the genetic causes of this heterogeneous group of inherited rare diseases.


Assuntos
Arritmias Cardíacas/etiologia , Proteínas de Membrana/genética , Distrofia Muscular do Cíngulo dos Membros/etiologia , Idoso , Idoso de 80 Anos ou mais , Animais , Moléculas de Adesão Celular , Criança , AMP Cíclico/metabolismo , Humanos , Masculino , Potenciais da Membrana , Proteínas de Membrana/fisiologia , Pessoa de Meia-Idade , Proteínas Musculares , Mutação , Canais de Potássio de Domínios Poros em Tandem/análise , Transporte Proteico , Peixe-Zebra
13.
Molecules ; 20(10): 18168-84, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26457695

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked inherited neuromuscular disorder due to mutations in the dystrophin gene. It is characterized by progressive muscle weakness and wasting due to the absence of dystrophin protein that causes degeneration of skeletal and cardiac muscle. The molecular diagnostic of DMD involves a deletions/duplications analysis performed by quantitative technique such as microarray-based comparative genomic hybridization (array-CGH), Multiple Ligation Probe Assay MLPA. Since traditional methods for detection of point mutations and other sequence variants require high cost and are time consuming, especially for a large gene like dystrophin, the use of next-generation sequencing (NGS) has become a useful tool available for clinical diagnosis. The dystrophin gene is large and finely regulated in terms of tissue expression, and RNA processing and editing includes a variety of fine tuned processes. At present, there are no effective treatments and the steroids are the only fully approved drugs used in DMD therapy able to slow disease progression. In the last years, an increasing variety of strategies have been studied as a possible therapeutic approach aimed to restore dystrophin production and to preserve muscle mass, ameliorating the DMD phenotype. RNA is the most studied target for the development of clinical strategies and Antisense Oligonucleotides (AONs) are the most used molecules for RNA modulation. The identification of delivery system to enhance the efficacy and to reduce the toxicity of AON is the main purpose in this area and nanomaterials are a very promising model as DNA/RNA molecules vectors. Dystrophinopathies therefore represent a pivotal field of investigation, which has opened novel avenues in molecular biology, medical genetics and novel therapeutic options.


Assuntos
Distrofina/genética , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/tratamento farmacológico , Mutação , Animais , Hibridização Genômica Comparativa , Terapia Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Técnicas de Diagnóstico Molecular , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Oligonucleotídeos Antissenso/uso terapêutico , Análise de Sequência de DNA
14.
Eur J Paediatr Neurol ; 19(5): 533-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25978941

RESUMO

BACKGROUND: Collagen VI-related disorders are a group of muscular diseases characterized by muscle wasting and weakness, joint contractures, distal laxity, serious respiratory dysfunction and cutaneous alterations, due to mutations in the COL6A1, COL6A2 and COL6A3 genes, encoding for collagen VI, a critical component of the extracellular matrix. The severe Ullrich congenital muscular dystrophy (UCMD) can be due to autosomal recessive mutations in one of the three genes with a related 25% recurrence risk. In the majority of UCMD cases nevertheless, the underlying mutation is thought to arise de novo and the recurrence risk is considered as low. METHODS AND RESULTS: Here we report a family with recurrence of UCMD in two half-sibs. In both, the molecular analysis revealed heterozygosity for the c.896G > A missense mutation in COL6A1 exon 10 (Gly299Glu) and for the COL6A1 c.1823-8G > A variation within COL6A1 intron 29. The intronic variation was inherited from the father and RNA analysis in skin fibroblasts allowed to exclude its role in affecting COL6A1 transcript processing. The Gly299Glu mutation occurred apparently de novo in the two sibs. CONCLUSION: The described mutational segregation strongly suggests the occurrence of paternal germline mosaicism. This is the first report of UCMD recurrence due to a germline mosaic COL6 gene mutation. Mosaicism deserves to be considered as possible inheritance pattern in genetic counseling and recurrence risk estimation in collagen VI-related diseases.


Assuntos
Colágeno Tipo VI/genética , Mosaicismo , Distrofias Musculares/genética , Esclerose/genética , Éxons , Heterozigoto , Humanos , Masculino , Mutação de Sentido Incorreto , Linhagem , Irmãos
15.
J Neurol Neurosurg Psychiatry ; 86(10): 1060-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25476005

RESUMO

OBJECTIVE: Duchenne muscular dystrophy (DMD) is characterised by progressive muscle weakness. It has recently been reported that single nucleotide polymorphisms (SNPs) located in the SPP1 and LTBP4 loci can account for some of the inter-individual variability observed in the clinical disease course. The validation of genetic association in large independent cohorts is a key process for rare diseases in order to qualify prognostic biomarkers and stratify patients in clinical trials. METHODS: Duchenne patients from five European neuromuscular centres were included. Information about age at wheelchair dependence and steroid use was gathered. Melting curve analysis of PCR fragments or Sanger sequencing were used to genotype SNP rs28357094 in the SPP1 gene in 336 patients. The genotype of SNPs rs2303729, rs1131620, rs1051303 and rs10880 in the LTBP4 locus was determined in 265 patients by mass spectrometry. For both loci, a multivariate analysis was performed, using genotype/haplotype, steroid use and cohort as covariates. RESULTS: We show that corticosteroid treatment and the IAAM haplotype of the LTBP4 gene are significantly associated with prolonged ambulation in patients with DMD. There was no significant association between the SNP rs28357094 in the SPP1 gene and the age of ambulation loss. CONCLUSIONS: This study underlines the importance of replicating genetic association studies for rare diseases in large independent cohorts to identify the most robust associations. We anticipate that genotyping of validated genetic associations will become important for the design and interpretation of clinical trials.


Assuntos
Proteínas de Ligação a TGF-beta Latente/genética , Distrofia Muscular de Duchenne/genética , Osteopontina/genética , Fatores Etários , Criança , Estudos de Coortes , Progressão da Doença , Europa (Continente) , Feminino , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Prognóstico , Reprodutibilidade dos Testes , Esteroides/uso terapêutico , Caminhada , Cadeiras de Rodas
16.
J Proteome Res ; 13(11): 5022-30, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25211533

RESUMO

Mutations in the collagen VI genes cause the Ullrich congenital muscular dystrophy (UCMD), with severe phenotype, and Bethlem myopathy (BM) with mild to moderate phenotype. Both, UCMD and BM patients show dystrophic features with degeneration/regeneration and replacement of muscle with fat and fibrous connective tissue. At molecular level, UCMD patients show autophagic impairment and increased PTP opening; these features are less severe in BM. To elucidate the biochemical mechanisms adopted by the muscle to adapt to collagen VI deficiency in BM and UCMD patients, a proteome analysis was carried out on human muscle biopsies. Qualitative and quantitative differences were assessed by 2D-DIGE coupled to MALDI-ToF/ToF MS. Proteomics results, coupled with immunoblotting, indicate changes in UPR, hexosamine pathway, and amino acid and fatty acid metabolism, suggesting an association of ER stress, metabolic dysregulation, autophagic impairment, and alteration in mechanotransduction signaling. Overall, these results indicate that despite the common downregulation of hexosamine pathway in UCMD and BM, in BM the protein quality control system is sustained by a metabolic adaptation supporting energy requirements for the maintenance of autophagy, counteracting ER misfolded protein overload. In UCMD, this multilayered system may be disrupted and worsened by the metabolic rewiring, which leads to lipotoxicity.


Assuntos
Contratura/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/congênito , Proteômica/métodos , Esclerose/metabolismo , Biópsia , Estudos de Casos e Controles , Colágeno Tipo VI/metabolismo , Contratura/fisiopatologia , Estresse do Retículo Endoplasmático , Ácidos Graxos/metabolismo , Hexosaminas/metabolismo , Humanos , Immunoblotting , Masculino , Músculo Esquelético/fisiopatologia , Distrofias Musculares/metabolismo , Distrofias Musculares/fisiopatologia , Reprodutibilidade dos Testes , Esclerose/fisiopatologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Eletroforese em Gel Diferencial Bidimensional , Resposta a Proteínas não Dobradas
17.
Exp Cell Res ; 325(1): 44-9, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24389168

RESUMO

Neuromuscular diseases (NMDs) comprise a range of rare disorders that include both hereditary peripheral neuropathies and myopathies. The heterogeneity and rarity of neuromuscular disorders are challenges for researchers seeking to develop effective diagnosis and treatment strategies. In particular, clinical trials of new therapies are made more difficult due to lack of reliable and monitorable clinical outcome measures. Biomarkers could be a way to speed up research in this field, shedding light on the pathophysiological mechanisms behind such diseases and providing invaluable tools for monitoring their progression, prognosis and response to drug treatment. Furthermore, biomarkers could represent a surrogate endpoint for clinical trials, enabling better stratification of patient cohorts through more accurate diagnosis and prognosis prediction. This review summarizes the types, applications, characteristics and best strategies for biomarker discovery to date.


Assuntos
Doenças Neuromusculares/metabolismo , Animais , Biomarcadores/metabolismo , Marcadores Genéticos , Humanos , Doenças Neuromusculares/genética , Proteoma/metabolismo
18.
Mol Genet Metab ; 110(1-2): 162-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23911890

RESUMO

Brody disease is an inherited myopathy associated with a defective function of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase 1 (SERCA1) protein. Mutations in the ATP2A1 gene have been reported only in some patients. Therefore it has been proposed to distinguish patients with ATP2A1 mutations, Brody disease (BD), from patients without mutations, Brody syndrome (BS). We performed a detailed study of SERCA1 protein expression in muscle of patients with BD and BS, and evaluated the alternative splicing of SERCA1 in primary cultures of normal human muscle and in infant muscle. SERCA1 reactivity was observed in type 2 muscle fibers of patients with and without ATP2A1 mutations and staining intensity was similar in patients and controls. Immunoblot analysis showed a significant reduction of SERCA1 band in muscle of BD patients. In addition we demonstrated that the wild type and mutated protein exhibits similar solubility properties and that RIPA buffer improves the recovery of the wild type and mutated SERCA1 protein. We found that SERCA1b, the SERCA1 neonatal form, is the main protein isoform expressed in cultured human muscle fibers and infant muscle. Finally, we identified two novel heterozygous mutations within exon 3 of the ATP2A1 gene from a previously described patient with BD.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Mutação , Miotonia Congênita/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Adulto , Sequência de Aminoácidos , Células Cultivadas , Pré-Escolar , Éxons , Feminino , Regulação da Expressão Gênica , Genótipo , Humanos , Lactente , Masculino , Fibras Musculares Esqueléticas/patologia , Miotonia Congênita/diagnóstico , Miotonia Congênita/patologia , Técnicas de Cultura de Tecidos
19.
Neurogenetics ; 14(3-4): 247-50, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23975261

RESUMO

Whole exome sequencing in two-generational kindred from Bangladesh with early onset spasticity, mild intellectual disability, distal amyotrophy, and cerebellar atrophy transmitted as an autosomal recessive trait identified the following two missense mutations in the EXOSC3 gene: a novel p.V80F mutation and a known p.D132A change previously associated with mild variants of pontocerebellar hypoplasia type 1. This study confirms the involvement of RNA processing proteins in disorders with motor neuron and cerebellar degeneration overlapping with spinocerebellar ataxia 36 and rare forms of hereditary spastic paraplegia with cerebellar features.


Assuntos
Cerebelo/patologia , Exoma , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Proteínas de Ligação a RNA/genética , Adolescente , Atrofia , Bangladesh , Análise Mutacional de DNA , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Espasticidade Muscular/genética , Mutação de Sentido Incorreto , Paraplegia Espástica Hereditária/genética , Ataxias Espinocerebelares/genética , Adulto Jovem
20.
PLoS One ; 7(9): e45328, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028937

RESUMO

The 2.2 Mb long dystrophin (DMD) gene, the largest gene in the human genome, corresponds to roughly 0.1% of the entire human DNA sequence. Mutations in this gene cause Duchenne muscular dystrophy and other milder X-linked, recessive dystrophinopathies. Using a custom-made tiling array, specifically designed for the DMD locus, we identified a variety of novel long non-coding RNAs (lncRNAs), both sense and antisense oriented, whose expression profiles mirror that of DMD gene. Importantly, these transcripts are intronic in origin and specifically localized to the nucleus and are transcribed contextually with dystrophin isoforms or primed by MyoD-induced myogenic differentiation. Furthermore, their forced ectopic expression in both human muscle and neuronal cells causes a specific and negative regulation of endogenous dystrophin full length isoforms and significantly down-regulate the activity of a luciferase reporter construct carrying the minimal promoter regions of the muscle dystrophin isoform. Consistent with this apparently repressive role, we found that, in muscle samples of dystrophinopathic female carriers, lncRNAs expression levels inversely correlate with those of muscle full length DMD isoforms. Overall these findings unveil an unprecedented complexity of the transcriptional pattern of the DMD locus and reveal that DMD lncRNAs may contribute to the orchestration and homeostasis of the muscle dystrophin expression pattern by either selective targeting and down-modulating the dystrophin promoter transcriptional activity.


Assuntos
Distrofina/genética , Músculo Esquelético/metabolismo , Isoformas de RNA/genética , RNA Longo não Codificante/genética , Feminino , Humanos , Masculino , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...