Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Adv Sci (Weinh) ; 11(15): e2306000, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38356246

RESUMO

A key goal for implanted medical devices is that they do not elicit a detrimental immune response. Macrophages play critical roles in the modulation of the host immune response and are the cells responsible for persistent inflammatory reactions to implanted biomaterials. Two novel immune-instructive polymers that stimulate pro- or anti-inflammatory responses from macrophages in vitro are investigated. These also modulate in vivo foreign body responses (FBR) when implanted subcutaneously in mice. Immunofluorescent staining of tissue abutting the polymer reveals responses consistent with pro- or anti-inflammatory responses previously described for these polymers. Three Dimensional OrbiTrap Secondary Ion Mass Spectrometry (3D OrbiSIMS) analysis to spatially characterize the metabolites in the tissue surrounding the implant, providing molecular histology insight into the metabolite response in the host is applied. For the pro-inflammatory polymer, monoacylglycerols (MG) and diacylglycerols (DG) are observed at increased intensity, while for the anti-inflammatory coating, the number of phospholipid species detected decreased, and pyridine and pyrimidine levels are elevated. Small molecule signatures from single-cell studies of M2 macrophages in vitro correlate with the in vivo observations, suggesting potential for prediction. Metabolite characterization by the 3D OrbiSIMS is shown to provide insight into the mechanism of bio-instructive materials as medical devices and to inform on the FBR to biomaterials.


Assuntos
Materiais Biocompatíveis , Reação a Corpo Estranho , Camundongos , Animais , Materiais Biocompatíveis/química , Polímeros , Anti-Inflamatórios , Lipídeos
2.
Eur J Pharm Biopharm ; 196: 114181, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224755

RESUMO

Hyperpigmentation, a prevalent dermatological condition characterized by melanin overproduction, poses treatment challenges due to the hydrophilicity of alpha-arbutin, a widely utilized tyrosinase inhibitor. This study investigates the efficacy of dissolving microneedles (DMNs) in augmenting skin permeation for alpha-arbutin delivery to the targeted epidermal site. Porcine full-thickness skin was employed in a 24-hour Franz cell study, commencing with the assessment of commercial alpha-arbutin-containing products. Solid steel microneedles (CMNs) from Dermapen® were utilized as both pre- and post-treatment modalities to evaluate the influence of different applications on alpha-arbutin delivery. Additionally, alpha-arbutin-loaded polyvinylpyrrolidone-co-vinyl acetate (PVPVA) DMNs, containing 2 % w/w alpha-arbutin, were fabricated and examined for their permeation-enhancing capabilities. HPLC analysis and 3D Orbitrap Secondary Ion Mass Spectrometry (OrbiSIMS) were employed to quantify and visualize alpha-arbutin in various Franz cell components. Results indicate that alpha-arbutin permeation to the skin was restricted (less than 1 %) without microneedle application and significantly increased by 6-fold (4-5 %) with post-treatment CMNs and DMNs, but not with pre-treatment CMNs. Notably, DMNs exhibited a more sustainable and robust capacity than post-treatment CMNs. OrbiSIMS imaging analysis revealed that DMNs visually enhance skin permeation of alpha-arbutin by delivering the compound to the basal layer of the targeted skin location. Overall, this study underscores the potential of DMNs as a promising delivery system for promoting targeted intradermal delivery of alpha-arbutin, providing a comprehensive exploration of various methodologies to identify innovative and improved microneedle approaches for alpha-arbutin permeation.


Assuntos
Arbutina , Nevo Pigmentado , Neoplasias Cutâneas , Espectrometria de Massa de Íon Secundário , Suínos , Animais , Administração Cutânea , Pele , Epiderme , Polímeros , Agulhas , Sistemas de Liberação de Medicamentos/métodos
3.
Anal Chem ; 95(49): 18287-18294, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38044628

RESUMO

Bacterial biofilms are structured communities consisting of cells enmeshed in a self-generated extracellular matrix usually attached to a surface. They contain diverse classes of molecules including polysaccharides, lipids, proteins, nucleic acids, and diverse small organic molecules (primary and secondary metabolites) which are organized to optimize survival and facilitate dispersal to new colonization sites. In situ characterization of the chemical composition and structure of bacterial biofilms is necessary to fully understand their development on surfaces relevant to biofouling in health, industry, and the environment. Biofilm development has been extensively studied using confocal microscopy using targeted fluorescent labels providing important insights into the architecture of biofilms. Recently, cryopreparation has been used to undertake targeted in situ chemical characterization using Orbitrap secondary ion mass spectrometry (OrbiSIMS), providing a label-free method for imaging biofilms in their native state. Although the high mass resolution of OrbiSIMS enables more confident peak assignments, it is still very challenging to assign most of the peaks in the spectra due to complexity of SIMS spectra and lack of automatic peak assignment methods. Here, we analyze the same OrbiSIMS depth profile data generated from the frozen-hydrated biofilm, but employ a new untargeted chemical filtering process utilizing mass spectral databases to assign secondary ions to decipher the large number of fragments present in the SIMS spectra. To move towards comprehensive analysis of different chemistries in the sample, we apply a molecular formula prediction approach which putatively assigns 81% of peaks in the 3D OrbiSIMS depth profile analysis. This enables us to catalog over 1000 lipids and their fragments, 3500 protein fragments, 71 quorum sensing-related molecules (2-alkyl-4-quinolones and N-acylhomoserine lactones), 150 polysaccharide fragments, and glycolipids simultaneously from one data set and map these separated molecular classes spatially through a Pseudomonas aeruginosa biofilm. Assignment of different chemistries in this sample facilitates identification of differences between biofilms grown on biofilm-promoting and biofilm-resistant polymers.


Assuntos
Biofilmes , Pseudomonas aeruginosa , Pseudomonas aeruginosa/química , Percepção de Quorum , Espectrometria de Massa de Íon Secundário/métodos , Glicolipídeos
4.
Anal Chem ; 95(47): 17384-17391, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37963228

RESUMO

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging is used across many fields for the atomic and molecular characterization of surfaces, with both high sensitivity and high spatial resolution. When large analysis areas are required, standard ToF-SIMS instruments allow for the acquisition of adjoining tiles, which are acquired by rastering the primary ion beam. For such large area scans, tiling artifacts are a ubiquitous challenge, manifesting as intensity gradients across each tile and/or sudden changes in intensity between tiles. Such artifacts are thought to be related to a combination of sample charging, local detector sensitivity issues, and misalignment of the primary ion gun, among other instrumental factors. In this work, we investigated six different computational tiling artifact removal methods: tensor decomposition, multiplicative linear correction, linear discriminant analysis, seamless stitching, simple averaging, and simple interpolating. To ensure robustness in the study, we applied these methods to three hyperspectral ToF-SIMS data sets and one OrbiTrapSIMS data set. Our study includes a carefully designed statistical analysis and a quantitative survey that subjectively assessed the quality of the various methods employed. Our results demonstrate that while certain methods are useful and preferred more often, no one particular approach can be considered universally acceptable and that the effectiveness of the artifact removal method is strongly dependent on the particulars of the data set analyzed. As examples, the multiplicative linear correction and seamless stitching methods tended to score more highly on the subjective survey; however, for some data sets, this led to the introduction of new artifacts. In contrast, simple averaging and interpolation methods scored subjectively poorly on the biological data set, but more highly on the microarray data sets. We discuss and explore these findings in depth and present general recommendations given our findings to conclude the work.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38016086

RESUMO

Enhancing osteogenesis via modulating immune cells is emerging as a new approach to address the current challenges in repairing bone defects and fractures. However, much remains unknown about the crosstalk between immune cells and osteolineage cells during bone formation. Moreover, biomaterial scaffold-based approaches to effectively modulate this crosstalk to favor bone healing are also lacking. This study is the first to investigate the interactions between macrophages and mesenchymal stem cells (MSCs) in co-cultures with the sustained release of an anti-inflammatory and pro-osteogenesis drug (dexamethasone) from three-dimensional (3D)-printed scaffolds. We successfully achieved the sustained release of dexamethasone from polycaprolactone (PCL) by adding the excipient-sucrose acetate isobutyrate (SAIB). Dexamethasone was released over 35 days in the 17-163 nM range. The osteogenic differentiation of MSCs was enhanced by M1 macrophages at early time points. The late-stage mineralization was dominated by dexamethasone, with little contribution from the macrophages. Besides confirming BMP-2 whose secretion was promoted by both dexamethasone and M1 macrophages as a soluble mediator for enhanced osteogenesis, IL-6 was found to be a possible new soluble factor that mediated osteogenesis in macrophage-MSC co-cultures. The phenotype switching from M1 to M2 was drastically enhanced by the scaffold-released dexamethasone but only marginally by the co-cultured MSCs. Our results offer new insight into macrophage-MSC crosstalk and demonstrate the potential of using drug-release scaffolds to both modulate inflammation and enhance bone regeneration.

6.
Bio Protoc ; 13(15): e4727, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37575382

RESUMO

The Three-dimensional OrbiTrap Secondary Ion Mass Spectrometry (3D OrbiSIMS) is a secondary ion mass spectrometry instrument, a combination of a Time of Flight (ToF) instrument with an Orbitrap analyzer. The 3D OrbiSIMS technique is a powerful tool for metabolic profiling in biological samples. This can be achieved at subcellular spatial resolution, high sensitivity, and high mass-resolving power coupled with MS/MS analysis. Characterizing the metabolic signature of macrophage subsets within tissue sections offers great potential to understand the response of the human immune system to implanted biomaterials. Here, we describe a protocol for direct analysis of individual cells after in vitro differentiation of naïve monocytes into M1 and M2 phenotypes using cytokines. As a first step in vivo, we investigate explanted silicon catheter sections as a medical device in a rodent model of foreign body response. Protocols are presented to allow the host response to different immune instructive materials to be compared. The first demonstration of this capability illustrates the great potential of direct cell and tissue section analysis for in situ metabolite profiling to probe functional phenotypes using molecular signatures. Details of the in vitro cell approach, materials, sample preparation, and explant handling are presented, in addition to the data acquisition approaches and the data analysis pipelines required to achieve useful interpretation of these complex spectra. This method is useful for in situ characterization of both in vitro single cells and ex vivo tissue sections. This will aid the understanding of the immune response to medical implants by informing the design of immune-instructive biomaterials with positive interactions. It can also be used to investigate a broad range of other clinically relevant therapeutics and immune dysregulations. Graphical overview.

7.
Anal Chem ; 95(14): 5994-6001, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36995369

RESUMO

Glioblastoma (GBM) is an incurable brain cancer with a median survival of less than two years from diagnosis. The standard treatment of GBM is multimodality therapy comprising surgical resection, radiation, and chemotherapy. However, prognosis remains poor, and there is an urgent need for effective anticancer drugs. Since different regions of a single GBM contain multiple cancer subpopulations ("intra-tumor heterogeneity"), this likely accounts for therapy failure as certain cancer cells can escape from immune surveillance and therapeutic threats. Here, we present metabolomic data generated using the Orbitrap secondary ion mass spectrometry (OrbiSIMS) technique to investigate brain tumor metabolism within its highly heterogeneous tumor microenvironment. Our results demonstrate that an OrbiSIMS-based untargeted metabolomics method was able to discriminate morphologically distinct regions (viable, necrotic, and non-cancerous) within single tumors from formalin-fixed paraffin-embedded tissue archives. Specifically, cancer cells from necrotic regions were separated from viable GBM cells based on a set of metabolites including cytosine, phosphate, purine, xanthine, and 8-hydroxy-7-methylguanine. Moreover, we mapped ubiquitous metabolites across necrotic and viable regions into metabolic pathways, which allowed for the discovery of tryptophan metabolism that was likely essential for GBM cellular survival. In summary, this study first demonstrated the capability of OrbiSIMS for in situ investigation of GBM intra-tumor heterogeneity, and the acquired information can potentially help improve our understanding of cancer metabolism and develop new therapies that can effectively target multiple subpopulations within a tumor.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Prognóstico , Espectrometria de Massa de Íon Secundário , Microambiente Tumoral , Metabolômica
8.
J Med Chem ; 66(7): 5099-5117, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36940414

RESUMO

Excessive melanin deposition may lead to a series of skin disorders. The production of melanin is carried out by melanocytes, in which the enzyme tyrosinase performs a key role. In this work, we identified a series of novel tyrosinase inhibitor hybrids with a dihydrochalcone skeleton and resorcinol structure, which can inhibit tyrosinase activity and reduce the melanin content in the skin. Compound 11c possessed the most potent activity against tyrosinase, showing IC50 values at nanomolar concentration ranges, along with significant antioxidant activity and low cytotoxicity. Furthermore, in vitro permeation tests, supported by HPLC analysis and 3D OrbiSIMS imaging visualization, revealed the excellent permeation of 11c. More importantly, compound 11c reduced the melanin content on UV-induced skin pigmentation in a guinea pig model in vivo. These results suggest that compound 11c may serve as a promising potent tyrosinase inhibitor for the development of a potential therapy to treat skin hyperpigmentation.


Assuntos
Hiperpigmentação , Melaninas , Animais , Cobaias , Monofenol Mono-Oxigenase , Hiperpigmentação/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico
9.
Acta Neuropathol Commun ; 11(1): 6, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631900

RESUMO

The most common malignant brain tumour in children, medulloblastoma (MB), is subdivided into four clinically relevant molecular subgroups, although targeted therapy options informed by understanding of different cellular features are lacking. Here, by comparing the most aggressive subgroup (Group 3) with the intermediate (SHH) subgroup, we identify crucial differences in tumour heterogeneity, including unique metabolism-driven subpopulations in Group 3 and matrix-producing subpopulations in SHH. To analyse tumour heterogeneity, we profiled individual tumour nodules at the cellular level in 3D MB hydrogel models, which recapitulate subgroup specific phenotypes, by single cell RNA sequencing (scRNAseq) and 3D OrbiTrap Secondary Ion Mass Spectrometry (3D OrbiSIMS) imaging. In addition to identifying known metabolites characteristic of MB, we observed intra- and internodular heterogeneity and identified subgroup-specific tumour subpopulations. We showed that extracellular matrix factors and adhesion pathways defined unique SHH subpopulations, and made up a distinct shell-like structure of sulphur-containing species, comprising a combination of small leucine-rich proteoglycans (SLRPs) including the collagen organiser lumican. In contrast, the Group 3 tumour model was characterized by multiple subpopulations with greatly enhanced oxidative phosphorylation and tricarboxylic acid (TCA) cycle activity. Extensive TCA cycle metabolite measurements revealed very high levels of succinate and fumarate with malate levels almost undetectable particularly in Group 3 tumour models. In patients, high fumarate levels (NMR spectroscopy) alongside activated stress response pathways and high Nuclear Factor Erythroid 2-Related Factor 2 (NRF2; gene expression analyses) were associated with poorer survival. Based on these findings we predicted and confirmed that NRF2 inhibition increased sensitivity to vincristine in a long-term 3D drug treatment assay of Group 3 MB. Thus, by combining scRNAseq and 3D OrbiSIMS in a relevant model system we were able to define MB subgroup heterogeneity at the single cell level and elucidate new druggable biomarkers for aggressive Group 3 and low-risk SHH MB.


Assuntos
Biomarcadores Tumorais , Neoplasias Cerebelares , Proteínas Hedgehog , Meduloblastoma , Humanos , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Proteínas Hedgehog/metabolismo , Hidrogéis/uso terapêutico , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Fator 2 Relacionado a NF-E2 , Análise de Célula Única , RNA-Seq
10.
Eur J Pharm Biopharm ; 182: 53-61, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36435313

RESUMO

Systemic drug delivery to the central nervous system (CNS) has been historically impeded by the presence of the blood brain barrier rendering many therapies inefficacious to any cancer cells residing within the brain. Therefore, local drug delivery systems are being developed to overcome this shortfall. Here we have manufactured polymeric microneedle (MN) patches, which can be anchored within a resection cavity site following surgical removal of a tumour such as isocitrate dehydrogenase wild type glioblastoma (GBM). These MN patches have been loaded with polymer coated nanoparticles (NPs) containing cannabidiol (CBD) or olaparib (OLA) and applied to an in vitro brain simulant and ex vivo rat brain tissue to assess drug release and distance of penetration. MN patches loaded with methylene blue dye were placed into a cavity of 0.6 % agarose to simulate brain tissue. The results showed that clear channels were generated by the MNs and the dye spread laterally throughout the agarose. When loaded with CBD-NPs, the agarose showed a CBD concentration of 12.5 µg/g at 0.5 cm from the MN insertion site. Furthermore, high performance liquid chromatography of ex vivo brain tissue following CBD-NP/MN patch insertion showed successful delivery of 59.6 µg/g into the brain tissue. Similarly, OLA-NP loaded MN patches showed delivery of 5.2 µg/g OLA into agarose gel at 0.5 cm distance from the insertion site. Orbitrap secondary ion mass spectrometry (OrbiSIMS) analysis confirmed the presence of OLA and the MN patch at up to 6 mm away from the insertion site following its application to a rat brain hemisphere. This data has provided insight into the capabilities and versatility of MN patches for use in local brain drug delivery, giving promise for future research.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Animais , Ratos , Sefarose , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Neoplasias Encefálicas/tratamento farmacológico , Encéfalo , Agulhas , Administração Cutânea
11.
J Pharm Sci ; 112(4): 1011-1019, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36384194

RESUMO

Hydrogel microneedles represent a promising approach to deliver drug molecules across skin into systemic circulation in a sustained release manner and without any polymer residue within skin. Acyclovir is an antiviral drug used for the treatment of several viral infections. However, the oral administration of acyclovir may cause gastrointestinal tract (GIT) disturbances with low bioavailability and poor patient compliance due to its requirement of five daily administrations to produce the desired effect. Therefore, it is thought that the preparation of hydrogel microneedle arrays containing acyclovir would improve the bioavailability and patient compliance by reducing the frequency of administration to once daily as well as overcome the GIT side effects associated with oral administration. A mixture of PEG 10,000 Da and PMVE/MA co-polymer 1,980,000 Da at a ratio of 1:3 (7.5%:22.5% w/w) with Na2CO3 3% w/w was found to produce the optimum hydrogel microneedle array formulation (F8) which showed suitable needle formation with an appropriate mechanical strength and excellent insertion ability, high drug content, sufficient swelling property and a sustained drug release over a period of 24 hours. The Ex vivo permeation study across human skin has demonstrated that the permeation of acyclovir from F8 hydrogel microneedle array was significantly (P≤ 0.05) increased by 39 times in comparison with microneedle-free film (control). The microneedle array has delivered 75.56% ± 4.2 of its loading dose over 24 hours, while the control film was only able to deliver 1.94% ± 0.14 of the total loading dose during the same period. Accordingly, these findings propose the potential application of hydrogel microneedle arrays for the transdermal delivery of acyclovir in a sustained release manner over 24 hours.


Assuntos
Aciclovir , Hidrogéis , Humanos , Hidrogéis/farmacologia , Preparações de Ação Retardada , Administração Cutânea , Pele , Sistemas de Liberação de Medicamentos , Polímeros/química , Agulhas , Microinjeções
12.
Analyst ; 147(23): 5537-5545, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36341756

RESUMO

Lameness is a major challenge in the dairy cattle industry in terms of animal welfare and economic implications. Better understanding of metabolic alteration associated with lameness could lead to early diagnosis and effective treatment, there-fore reducing its prevalence. To determine whether metabolic signatures associated with lameness could be discovered with untargeted metabolomics, we developed a novel workflow using direct infusion-tandem mass spectrometry to rapidly analyse (2 min per sample) dried milk spots (DMS) that were stored on commercially available Whatman® FTA® DMPK cards for a prolonged period (8 and 16 days). An orthogonal partial least squares-discriminant analysis (OPLS-DA) method validated by triangulation of multiple machine learning (ML) models and stability selection was employed to reliably identify important discriminative metabolites. With this approach, we were able to differentiate between lame and healthy cows based on a set of lipid molecules and several small metabolites. Among the discriminative molecules, we identified phosphatidylglycerol (PG 35:4) as the strongest and most sensitive lameness indicator based on stability selection. Overall, this untargeted metabolomics workflow is found to be a fast, robust, and discriminating method for determining lameness in DMS samples. The DMS cards can be potentially used as a convenient and cost-effective sample matrix for larger scale research and future routine screening for lameness.


Assuntos
Doenças dos Bovinos , Coxeadura Animal , Feminino , Bovinos , Animais , Coxeadura Animal/diagnóstico , Coxeadura Animal/epidemiologia , Coxeadura Animal/metabolismo , Leite/química , Lactação , Doenças dos Bovinos/diagnóstico , Espectrometria de Massas em Tandem , Indústria de Laticínios/métodos , Metabolômica , Aprendizado de Máquina
13.
Analyst ; 147(17): 3854-3866, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35904202

RESUMO

Carbonaceous deposits are ubiquitous, being formed on surfaces in engines, fuel systems and on catalysts operating at high temperatures for hydrocarbon transformations. In internal combustion engines, their formation negatively affects worldwide vehicle emissions and fuel economy, leading to premature deaths and environmental damage. Deposit composition and formation pathways are poorly understood due to their insolubility and the intrinsic complexity of their layered carbonaceous matrix. Here, we apply the in situ high mass resolving power capabilities of 3D Orbitrap secondary ion mass spectrometry (3D OrbiSIMS) argon cluster depth profiling on 16 lab grown deposits and evidence common molecular distributions in deposit depth and in positions relative to the combustion chamber. We observe the products of the growth of both planar and curved polycyclic aromatic hydrocarbons to form small fullerenes over time in the engine and propose possible formation pathways which explain the molecular distributions observed. These include alkyl scission, cyclisation of aliphatic side chains and hydrogen abstraction C2H2 addition to form larger aromatic structures. We apply this pathway to previously unidentified nitrogen containing structures in deposits including quinolines and carbazoles. For the first time, 3D OrbiSIMS results were compared and validated with data from atmospheric pressure matrix assisted laser desorption ionization MS. The comprehensive characterization provided will help the development of a new generation of chemical additives to reduce deposits, and thus improve vehicle emissions and global air quality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Hidrocarbonetos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Emissões de Veículos/análise
14.
Pharm Res ; 39(8): 1945-1958, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689005

RESUMO

PURPOSE: Chlorhexidine digluconate (CHG) is a first-line antiseptic agent typically applied to the skin as a topical solution prior to surgery due to its efficacy and safety profile. However, the physiochemical properties of CHG limits its cutaneous permeation, preventing it from reaching potentially pathogenic bacteria residing within deeper skin layers. Thus, the utility of a solid oscillating microneedle system, Dermapen®, and a CHG-hydroxyethylcellulose (HEC) gel were investigated to improve the intradermal delivery of CHG. METHODS: Permeation of CHG from the commercial product, Hibiscrub®, and HEC-CHG gels (containing 1% or 4% CHG w/w) was assessed in intact skin, or skin that had been pre-treated with microneedles of different array numbers, using an Franz diffusion cells and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). RESULTS: Gels containing 1% and 4% CHG resulted in significantly increased depth permeation of CHG compared to Hibiscrub® (4% w/v CHG) when applied to microneedle pre-treated skin, with the effect being more significant with the higher array number. ToF-SIMS analysis indicated that the depth of dermal penetration achieved was sufficient to reach the skin strata that typically harbours pathogenic bacteria, which is currently inaccessible by Hibiscrub®, and showed potential lateral diffusion within the viable epidermis. CONCLUSIONS: This study indicates that HEC-CHG gels applied to microneedle pre-treated skin may be a viable strategy to improve the permeation CHG into the skin. Such enhanced intradermal delivery may be of significant clinical utility for improved skin antisepsis in those at risk of a skin or soft tissue infection following surgical intervention.


Assuntos
Anti-Infecciosos Locais , Clorexidina , Anti-Infecciosos Locais/farmacologia , Bactérias , Clorexidina/análogos & derivados , Clorexidina/farmacologia , Géis/farmacologia , Espectrometria de Massas
15.
PLoS Negl Trop Dis ; 16(6): e0010531, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35675260

RESUMO

[This corrects the article DOI: 10.1371/journal.pntd.0005971.].

16.
Anal Chem ; 94(26): 9389-9398, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35713879

RESUMO

Macrophages are important immune cells that respond to environmental cues acquiring a range of activation statuses represented by pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes at each end of their spectrum. Characterizing the metabolic signature (metabolic profiling) of different macrophage subsets is a powerful tool to understand the response of the human immune system to different stimuli. Here, the recently developed 3D OrbiSIMS instrument is applied to yield useful insight into the metabolome from individual cells after in vitro differentiation of macrophages into naïve, M1, and M2 phenotypes using different cytokines. This analysis strategy not only requires more than 6 orders of magnitude less sample than traditional mass spectrometry approaches but also allows the study of cell-to-cell variance. Characteristic metabolites in macrophage subsets are identified using a targeted lipid and data-driven multivariate approach highlighting amino acids and other small molecules. The diamino acids alanylasparagine and lipid sphingomyelin SM(d18/16:0) are uniquely found in M1 macrophages, while pyridine and pyrimidine are observed at increased intensity in M2 macrophages, findings which link to known biological pathways. The first demonstration of this capability illustrates the great potential of direct cell analysis for in situ metabolite profiling with the 3D OrbiSIMS to probe functional phenotype at the single-cell level using molecular signatures and to understand the response of the human body to implanted devices and immune diseases.


Assuntos
Macrófagos , Metabolômica , Citocinas/metabolismo , Lipídeos , Macrófagos/metabolismo , Fenótipo
17.
Glob Chall ; 6(5): 2100138, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35602408

RESUMO

There is an increasing focus in healthcare environments on combatting antimicrobial resistant infections. While bacterial infections are well reported, infections caused by fungi receive less attention, yet have a broad impact on society and can be deadly. Fungi are eukaryotes with considerable shared biology with humans, therefore limited technologies exist to combat fungal infections and hospital infrastructure is rarely designed for reducing microbial load. In this study, a novel antimicrobial surface (AMS) that is modified with the broad-spectrum biocide chlorhexidine is reported. The surfaces are shown to kill the opportunistic fungal pathogens Candida albicans and Cryptococcus neoformans very rapidly (<15 min) and are significantly more effective than current technologies available on the commercial market, such as silver and copper.

18.
Eur J Pharm Biopharm ; 174: 29-34, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35364254

RESUMO

Efficient delivery of highly lipophilic drugs or prodrugs to the mesenteric lymph nodes (MLN) can be achieved following oral administration with lipids. However, it remains unclear which specific MLN can be targeted and to what extent. Moreover, the efficiency of drug delivery to the retroperitoneal lymph nodes (RPLN) has not been assessed. The aim of this study was to assess the distribution of a highly lipophilic model drug cannabidiol (CBD), known to undergo intestinal lymphatic transport following administration with lipids, into specific MLN and RPLN in rats at various time-points post dosing. In vivo studies showed that at 2 h following administration, significantly higher concentrations of CBD were present in the region second from the apex of the MLN chain. From 3 h following administration, concentrations in all MLN were similar. CBD was also found at substantial levels in RPLN. This study demonstrates that drug concentrations in specific MLN are different, at least at the peak of the absorption process. Moreover, in addition to the MLN, the RPLN may also be targeted by oral route of administration, which may have further implications for treatment of a range of diseases.


Assuntos
Canabidiol , Pró-Fármacos , Administração Oral , Animais , Excipientes , Lipídeos , Linfonodos , Ratos
19.
Pharmaceutics ; 14(3)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35335947

RESUMO

Historically, pre-clinical neuro-oncological drug delivery studies have exhaustively relied upon overall animal survival as an exclusive measure of efficacy. However, with no adopted methodology to both image and quantitate brain parenchyma penetration of label-free drugs, an absence of efficacy typically hampers clinical translational potential, rather than encourage re-formulation of drug compounds using nanocarriers to achieve greater tissue penetration. OrbiSIMS, a next-generation analytical instrument for label-free imaging, combines the high resolving power of an OrbiTrapTM mass spectrometer with the relatively high spatial resolution of secondary ion mass spectrometry. Here, we develop an ex vivo pipeline using OrbiSIMS to accurately detect brain penetration of drug compounds. Secondary ion spectra were acquired for a panel of drugs (etoposide, olaparib, gemcitabine, vorinostat and dasatinib) under preclinical consideration for the treatment of isocitrate dehydrogenase-1 wild-type glioblastoma. Each drug demonstrated diagnostic secondary ions (all present molecular ions [M-H]− which could be discriminated from brain analytes when spiked at >20 µg/mg tissue. Olaparib/dasatinib and olaparib/etoposide dual combinations are shown as exemplars for the capability of OrbiSIMS to discriminate distinct drug ions simultaneously. Furthermore, we demonstrate the imaging capability of OrbiSIMS to simultaneously illustrate label-free drug location and brain chemistry. Our work encourages the neuro-oncology community to consider mass spectrometry imaging modalities to complement in vivo efficacy studies, as an analytical tool to assess brain distribution of systemically administered drugs, or localised brain penetration of drugs released from micro- or nano-scale biomaterials.

20.
Proc Natl Acad Sci U S A ; 119(12): e2114380119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35298332

RESUMO

SignificanceSkin is recognized as an intricate assembly of molecular components, which facilitate cell signaling, metabolism, and protein synthesis mechanisms in order to offer protection, regulation, and sensation to the body. Our study takes significant steps to characterize in more detail the complex chemistry of the skin, in particular by generating a better understanding of the uppermost layer, the stratum corneum. Using a state-of-the-art 3D OrbiSIMS technique, we were able to observe the depth distribution, in situ, for a wide range of molecular species. This unprecedented molecular characterization of skin provides information that has the potential to benefit research into fundamental processes, such as those associated with skin aging and disease, and the development and delivery of effective topical formulations.


Assuntos
Epiderme , Envelhecimento da Pele , Epiderme/metabolismo , Pele/metabolismo , Absorção Cutânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...