Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 13(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34834181

RESUMO

Freeze-drying is commonly used to increase the shelf-life of pharmaceuticals and biopharmaceuticals. Freezing represents a crucial phase in the freeze-drying process, as it determines both cycle efficiency and product quality. For this reason, different strategies have been developed to allow for a better control of freezing, among them, the so-called vacuum-induced surface freezing (VISF), which makes it possible to trigger nucleation at the same time in all the vials being processed. We studied the effect of different vial types, characterized by the presence of hydrophilic (sulfate treatment) or hydrophobic (siliconization and TopLyo Si-O-C-H layer) inner coatings, on the application of VISF. We observed that hydrophobic coatings promoted boiling and blow-up phenomena, resulting in unacceptable aesthetic defects in the final product. In contrast, hydrophilic coatings increased the risk of fogging (i.e., the undesired creeping of the product upward along the inner vial surface). We also found that the addition of a surfactant (Tween 80) to the formulation suppressed boiling in hydrophobic-coated vials, but it enhanced the formation of bubbles. This undesired bubbling events induced by the surfactant could, however, be eliminated by a degassing step prior to the application of VISF. Overall, the combination of degasification and surfactant addition seems to be a promising strategy for the successful induction of nucleation by VISF in hydrophobic vials.

2.
Trends Biotechnol ; 39(11): 1120-1130, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707043

RESUMO

Chemical, manufacturing, and control development timelines occupy a significant part of vaccine end-to-end development. In the on-going race for accelerating timelines, in silico process development constitutes a viable strategy that can be achieved through an artificial intelligence (AI)-driven or a mechanistically oriented approach. In this opinion, we focus on the mechanistic option and report on the modeling competencies required to achieve it. By inspecting the most frequent vaccine process units, we identify fluid mechanics, thermodynamics and transport phenomena, intracellular modeling, hybrid modeling and data science, and model-based design of experiments as the pillars for vaccine development. In addition, we craft a generic pathway for accommodating the modeling competencies into an in silico process development strategy.


Assuntos
Inteligência Artificial , Vacinas , Simulação por Computador
3.
J Pharm Sci ; 110(3): 1323-1336, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33275993

RESUMO

Specific devices that combine 96-well plates and high-throughput vials were recently proposed to improve the efficiency of formulation screening. Such devices make it possible to increase the number of formulations tested while reducing the amount of active ingredients needed. The geometry of the product container influences the heat and mass transfer during freeze-drying, impacting product temperature (T_{p}) and therefore affecting the final product quality. Our study aimed to develop a tool to identify the operating conditions resulting in the same Tp when using high-throughput vials inside well plates and serum vials. Heat transfer coefficients between the shelf and the high-throughput vials (KV) were measured using the gravimetric method at chamber pressures ranging from 4 to 65 Pa for a batch of 576 vials located at the center of the well plates. KV distributions were used to predict TP distributions during primary drying of a 5% sucrose solution. Tp values were in average 8 °C higher using high-throughput vials instead of serum vials at chamber pressures lower than 12 Pa. This study provides a graphical solution for the management of process scale-up and scale-down between both types of product containers depending on their respective KV and product resistance to mass transfer.


Assuntos
Temperatura Alta , Tecnologia Farmacêutica , Dessecação , Liofilização , Temperatura
4.
Pharm Dev Technol ; 25(10): 1302-1313, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32752908

RESUMO

Freeze-drying is a dehydration process that provides improved stability of vaccine formulations for shipment and storage. During the primary drying steps of the process, product temperature has to be maintained below a critical value to avoid visual defects of the product, leading to an increase of the sublimation time and thus of the operational costs. In this work, we used the design space approach together with experimental analysis for the development of the primary drying step of a vaccine model formulation. First, the formulation was characterized by determining the glass transition and the collapse temperatures. Successively, the dynamic design space of primary drying was calculated via mathematical modelling, and a proven acceptable range (PAR) was defined around the selected operating values. Finally, the cycle and the PAR were validated by performing a freeze-drying cycle at pilot scale and by evaluating the values of the product critical quality attributes (e.g. moisture content, visual aspect, reconstitution time).


Assuntos
Química Farmacêutica/métodos , Liofilização/métodos , Modelos Teóricos , Vacinas/química , Projetos Piloto , Temperatura , Fatores de Tempo , Potência de Vacina , Vitrificação
5.
Eur J Pharm Biopharm ; 128: 379-388, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29746910

RESUMO

During the primary drying step of the freeze-drying process, mass transfer resistance strongly affects the product temperature, and consequently the final product quality. The main objective of this study was to evaluate the variability of the mass transfer resistance resulting from the dried product layer (Rp) in a manufacturing batch of vials, and its potential effect on the product temperature, from data obtained in a pilot scale freeze-dryer. Sublimation experiments were run at -25 °C and 10 Pa using two different freezing protocols: with spontaneous or controlled ice nucleation. Five repetitions of each condition were performed. Global (pressure rise test) and local (gravimetric) methods were applied as complementary approaches to estimate Rp. The global method allowed to assess variability of the evolution of Rp with the dried layer thickness between different experiments whereas the local method informed about Rp variability at a fixed time within the vial batch. A product temperature variability of approximately ±4.4 °C was defined for a product dried layer thickness of 5 mm. The present approach can be used to estimate the risk of failure of the process due to mass transfer variability when designing freeze-drying cycle.


Assuntos
Dessecação/métodos , Tecnologia Farmacêutica/métodos , Estabilidade de Medicamentos , Liofilização/métodos , Pressão , Temperatura
6.
J Pharm Sci ; 107(8): 2098-2106, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29665380

RESUMO

During the freeze-drying process, vials located at the border of the shelf usually present higher heat flow rates that result in higher product temperatures than vials in the center. This phenomenon, referred to as edge vial effect, can lead to product quality variability within the same batch of vials and between batches at different scales. Our objective was to investigate the effect of various freeze dryer design features on heat transfer variability. A 3D mathematical model previously developed in COMSOL Multiphysics and experimentally validated was used to simulate the heat transfer of a set of vials located at the edge and in the center of the shelf. The design features considered included the vials loading configurations, the thermal characteristics, and some relevant dimensions of the drying chamber geometry. The presence of the rail in the loading configuration and the value of the shelf emissivity strongly impacted the heat flow rates received by the vials. Conversely, the heat transfer was not significantly influenced by modifications of the thermal conductivity of the rail, the emissivity of the walls, or the geometry of the drying chamber. The model developed turned out to be a powerful tool for cycle development and scale-up.


Assuntos
Liofilização/instrumentação , Simulação por Computador , Embalagem de Medicamentos/instrumentação , Desenho de Equipamento , Liofilização/métodos , Modelos Químicos , Temperatura , Condutividade Térmica
7.
J Pharm Sci ; 106(3): 770-778, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27939928

RESUMO

Vial design features can play a significant role in heat transfer between the shelf and the product and, consequently, in the final quality of the freeze-dried product. Our objective was to investigate the impact of the variability of some geometrical dimensions of a set of tubing vials commonly used for pharmaceuticals production on the distribution of the vial heat transfer coefficients (Kv) and its potential consequence on product temperature. Sublimation tests were carried out using pure water and 8 combinations of chamber pressure (4-50 Pa) and shelf temperature (-40°C and 0°C) in 2 freeze-dryers. Kv values were individually determined for 100 vials located in the center of the shelf. Vial bottom curvature depth and contact area between the vial and the shelf were carefully measured for 120 vials and these data were used to calculate Kv distribution due to variability in vial geometry. At low pressures commonly used for sensitive products (below 10 Pa), the vial-shelf contact area appeared crucial for explaining Kv heterogeneity and was found to generate, in our study, a product temperature distribution of approximately 2°C during sublimation. Our approach provides quantitative guidelines for defining vial geometry tolerance specifications and product temperature safety margins.


Assuntos
Armazenamento de Medicamentos/métodos , Preparações Farmacêuticas/química , Tecnologia Farmacêutica/métodos , Armazenamento de Medicamentos/normas , Vidro/química , Vidro/normas , Temperatura Alta/efeitos adversos , Preparações Farmacêuticas/normas , Pressão/efeitos adversos , Tecnologia Farmacêutica/normas , Água/efeitos adversos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...