Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(26): 7393, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37416714

RESUMO

[This corrects the article DOI: 10.1039/D2SC05511B.].

2.
J Am Chem Soc ; 145(31): 17066-17074, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37493592

RESUMO

The base excision repair (BER) pathway is a frontline defender of genomic integrity and plays a central role in epigenetic regulation through its involvement in the erasure of 5-methylcytosine. This biological and clinical significance has led to a demand for analytical methods capable of monitoring BER activities, especially in living cells. Unfortunately, prevailing methods, which are primarily derived from nucleic acids, are mostly incompatible with intracellular use due to their susceptibility to nuclease degradation and other off-target interactions. These limitations preclude important biological studies of BER enzymes and many clinical applications. Herein, we report a straightforward approach for constructing biostable BER probes using a unique chimeric d/l-DNA architecture that exploits the bioorthogonal properties of mirror-image l-DNA. We show that chimeric BER probes have excellent stability within living cells, where they were successfully employed to monitor relative BER activity, evaluate the efficiency of small molecule BER inhibitors, and study enzyme mutants. Notably, we report the first example of a fluorescent probe for real-time monitoring of thymine DNA glycosylase (TDG)-mediated BER of 5-formylcytosine and 5-carboxylcytosine in living cells, providing a much-needed tool for studying DNA (de)methylation biology. Chimeric probes offer a robust and highly generalizable approach for real-time monitoring of BER activity in living cells, which should enable a broad spectrum of basic research and clinical applications.


Assuntos
Timina DNA Glicosilase , Timina DNA Glicosilase/metabolismo , Epigênese Genética , Metilação de DNA , Reparo do DNA , DNA/metabolismo , Sondas de DNA/genética , Sondas de DNA/metabolismo
3.
J Biol Chem ; 299(7): 104907, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37307918

RESUMO

Thymine DNA glycosylase (TDG) is an essential enzyme involved in numerous biological pathways, including DNA repair, DNA demethylation, and transcriptional activation. Despite these important functions, the mechanisms surrounding the actions and regulation of TDG are poorly understood. In this study, we demonstrate that TDG induces phase separation of DNA and nucleosome arrays under physiologically relevant conditions in vitro and show that the resulting chromatin droplets exhibited behaviors typical of phase-separated liquids, supporting a liquid-liquid phase separation model. We also provide evidence that TDG has the capacity to form phase-separated condensates in the cell nucleus. The ability of TDG to induce chromatin phase separation is dependent on its intrinsically disordered N- and C-terminal domains, which in isolation, promote the formation of chromatin-containing droplets having distinct physical properties, consistent with their unique mechanistic roles in the phase separation process. Interestingly, DNA methylation alters the phase behavior of the disordered domains of TDG and compromises formation of chromatin condensates by full-length TDG, indicating that DNA methylation regulates the assembly and coalescence of TDG-mediated condensates. Overall, our results shed new light on the formation and physical nature of TDG-mediated chromatin condensates, which have broad implications for the mechanism and regulation of TDG and its associated genomic processes.


Assuntos
Cromatina , Metilação de DNA , DNA , Timina DNA Glicosilase , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , DNA/química , DNA/metabolismo , Timina DNA Glicosilase/genética , Timina DNA Glicosilase/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo
4.
J Biol Chem ; 299(4): 104590, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36889585

RESUMO

Thymine DNA glycosylase (TDG) is a multifaceted enzyme involved in several critical biological pathways, including transcriptional activation, DNA demethylation, and DNA repair. Recent studies have established regulatory relationships between TDG and RNA, but the molecular interactions underlying these relationships are poorly understood. Herein, we now demonstrate that TDG binds directly to RNA with nanomolar affinity. Using synthetic oligonucleotides of defined length and sequence, we show that TDG has a strong preference for binding G-rich sequences in single-stranded RNA but binds weakly to single-stranded DNA and duplex RNA. TDG also binds tightly to endogenous RNA sequences. Studies with truncated proteins indicate that TDG binds RNA primarily through its structured catalytic domain and that its disordered C-terminal domain plays a key role in regulating TDG's affinity and selectivity for RNA. Finally, we show that RNA competes with DNA for binding to TDG, resulting in the inhibition of TDG-mediated excision in the presence of RNA. Together, this work provides support for and insights into a mechanism wherein TDG-mediated processes (e.g., DNA demethylation) are regulated through the direct interactions of TDG with RNA.


Assuntos
Timina DNA Glicosilase , Timina DNA Glicosilase/genética , Timina DNA Glicosilase/metabolismo , Reparo do DNA , DNA/metabolismo , RNA , Proteínas de Ligação a RNA/metabolismo , Timina
5.
Chem Sci ; 14(5): 1145-1154, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36756313

RESUMO

Due to their intrinsic nuclease resistance, mirror image l-oligonucleotides are being increasingly employed in the development of biomedical research tools and therapeutics. Yet, the influence of chirality on the behavior of oligonucleotides in living systems, and specifically, the extent to which l-oligonucleotides interact with endogenous biomacromolecules and the resulting consequences remain unknown. In this study, we characterized the intracellular behavior of l-oligonucleotides for the first time, revealing important chirality-dependent effects on oligonucleotide cytotoxicity. We show that exogenously delivered l-oligonucleotides have the potential to be highly cytotoxic, which is dependent on backbone chemistry, sequence, and structure. Notably, for the sequences tested, we found that single-stranded G-rich l-RNAs are more cytotoxic than their d-DNA/RNA counterparts, exhibiting low nanomolar EC50 values. Importantly, RNA-seq analysis of differentially expressed genes suggests that G-rich l-RNAs stimulate an innate immune response and pro-inflammatory cytokine production. These data not only challenge the general perception that mirror image l-oligonucleotides are nontoxic and nonimmunogenic, but also reveal previously unrecognized therapeutic opportunities. Moreover, by establishing sequence/structure toxicity relationships, this work will guide how future l-oligonucleotide-based biotechnologies are designed and applied.

6.
Chembiochem ; 23(24): e202200520, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36282114

RESUMO

Aptamers composed of mirror-image L-(deoxy)ribose nucleic acids, referred to as L-aptamers, are a promising class of RNA-binding reagents. Yet, the selectivity of cross-chiral interactions between L-aptamers and their RNA targets remain poorly characterized, limiting the potential utility of this approach for applications in biological systems. Herein, we carried out the first comprehensive analysis of cross-chiral L-aptamer selectivity using a newly developed "inverse" in vitro selection approach that exploits the genetic nature of the D-RNA ligand. By employing a library of more than a million target-derived sequences, we determined the RNA sequence and structural preference of a model L-aptamer and revealed previously unidentified and potentially broad off-target RNA binding behaviors. These results provide valuable information for assessing the likelihood and consequences of potential off-target interactions and reveal strategies to mitigate these effects. Thus, inverse in vitro selection provides several opportunities to advance L-aptamer technology.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/química , RNA/química , Biblioteca Gênica , Ligantes , Sequência de Bases , Técnica de Seleção de Aptâmeros
7.
Angew Chem Int Ed Engl ; 61(45): e202211292, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-35999181

RESUMO

Human cyclophilin B (CypB) is oversecreted by pancreatic cancer cells, making it a potential biomarker for early-stage disease diagnosis. Our group is motivated to develop aptamer-based assays to measure CypB levels in biofluids. However, human cyclophilins have been postulated to have collateral nuclease activity, which could impede the use of aptamers for CypB detection. To establish if CypB can hydrolyze electrode-bound nucleic acids, we used ultrasensitive electrochemical sensors to measure CypB's hydrolytic activity. Our sensors use ssDNA and dsDNA in the biologically predominant d-DNA form, and in the nuclease resistant l-DNA form. Challenging such sensors with CypB and control proteins, we unequivocally demonstrate that CypB can cleave nucleic acids. To our knowledge, this is the first study to use electrochemical biosensors to reveal the hydrolytic activity of a protein that is not known to be a nuclease. Future development of CypB bioassays will require the use of nuclease-resistant aptamer sequences.


Assuntos
Ácidos Nucleicos , Neoplasias Pancreáticas , Humanos , Ciclofilinas/metabolismo , DNA , Endonucleases , Técnicas Eletroquímicas
8.
RSC Chem Biol ; 3(1): 79-84, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35128411

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, has resulted in an ongoing global pandemic that has already claimed more than 4 million lives. While most antiviral efforts have focused on essential SARS-CoV-2 proteins, RNA structural elements within the viral genome are also compelling targets. In this study, we identified high-affinity l-DNA aptamers against a SARS-CoV-2 stem-loop II-like motif (s2m), a highly conserved RNA structure with promising diagnostic and therapeutic potential. Optimized l-C1t and l-C3t aptamers bind selectively to s2m RNA with K d values in the nanomolar range, and are capable of differentiating the monomeric s2m stem-loop from the proposed homodimer duplex. This structure-specific mode of recognition also allows l-C1t and l-C3t to discriminate between s2m RNAs from SARS-CoV-2 and SARS-CoV-1, which differ by just two nucleotides. Finally, we show that l-C1t and l-C3t induce dramatic conformational changes in s2m structure upon binding, and thus, have the potential to block protein-s2m interactions. Overall, these results demonstrate the feasibility of targeting SARS-CoV-2 RNA using l-aptamers, which has important implications in the diagnosis and treatment of COVID-19. Moreover, the high affinity and selectivity of l-C1t and l-C3t, coupled with the intrinsic nuclease resistance of l-DNA, present an opportunity for generating new tools and probes for interrogating s2m function in SARS-CoV-2 and related viruses.

10.
Artigo em Inglês | MEDLINE | ID: mdl-34328690

RESUMO

Watson-Crick base pairing rules provide a powerful approach for engineering DNA-based nanodevices with programmable and predictable behaviors. In particular, DNA strand displacement reactions have enabled the development of an impressive repertoire of molecular devices with complex functionalities. By relying on DNA to function, dynamic strand displacement devices represent powerful tools for the interrogation and manipulation of biological systems. Yet, implementation in living systems has been a slow process due to several persistent challenges, including nuclease degradation. To circumvent these issues, researchers are increasingly turning to chemically modified nucleotides as a means to increase device performance and reliability within harsh biological environments. In this review, we summarize recent progress toward the integration of chemically modified nucleotides with DNA strand displacement reactions, highlighting key successes in the development of robust systems and devices that operate in living cells and in vivo. We discuss the advantages and disadvantages of commonly employed modifications as they pertain to DNA strand displacement, as well as considerations that must be taken into account when applying modified oligonucleotide to living cells. Finally, we explore how chemically modified nucleotides fit into the broader goal of bringing dynamic DNA nanotechnology into the cell, and the challenges that remain. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing.


Assuntos
DNA , Nucleotídeos , DNA/química , Nanotecnologia/métodos , Reprodutibilidade dos Testes
11.
Chem Commun (Camb) ; 57(81): 10508-10511, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34550128

RESUMO

Due to their intrinsic nuclease resistance, L-oligonucleotides are being increasingly utilized in the development of molecular tools and sensors. Yet, it remains challenging to synthesize long L-oligonucleotides, potential limiting future applications. Herein, we report straightforward and versitile approach to assemble long L-RNAs from two or more shorter fragments using T4 RNA ligase 1. We show that this approach is compatible with the assembly of several classes of functional L-RNA, which we highlight by generating a 124 nt L-RNA biosensor that functions in serum.


Assuntos
RNA Ligase (ATP)/metabolismo , RNA/metabolismo , Proteínas Virais/metabolismo , Humanos , RNA/sangue , RNA/química
12.
Nucleic Acids Res ; 49(11): 6114-6127, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34125895

RESUMO

Dynamic DNA nanodevices represent powerful tools for the interrogation and manipulation of biological systems. Yet, implementation remains challenging due to nuclease degradation and other cellular factors. Use of l-DNA, the nuclease resistant enantiomer of native d-DNA, provides a promising solution. On this basis, we recently developed a strand displacement methodology, referred to as 'heterochiral' strand displacement, that enables robust l-DNA nanodevices to be sequence-specifically interfaced with endogenous d-nucleic acids. However, the underlying reaction - strand displacement from PNA-DNA heteroduplexes - remains poorly characterized, limiting design capabilities. Herein, we characterize the kinetics of strand displacement from PNA-DNA heteroduplexes and show that reaction rates can be predictably tuned based on several common design parameters, including toehold length and mismatches. Moreover, we investigate the impact of nucleic acid stereochemistry on reaction kinetics and thermodynamics, revealing important insights into the biophysical mechanisms of heterochiral strand displacement. Importantly, we show that strand displacement from PNA-DNA heteroduplexes is compatible with RNA inputs, the most common nucleic acid target for intracellular applications. Overall, this work greatly improves the understanding of heterochiral strand displacement reactions and will be useful in the rational design and optimization of l-DNA nanodevices that operate at the interface with biology.


Assuntos
DNA/química , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Peptídicos/química , Cinética , RNA/química , Estereoisomerismo , Termodinâmica
13.
Langmuir ; 37(17): 5213-5221, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33876937

RESUMO

Electrochemical aptamer-based (E-AB) sensors are a technology capable of real-time monitoring of drug concentrations directly in the body. These sensors achieve their selectivity from surface-attached aptamers, which alter their conformation upon target binding, thereby causing a change in electron transfer kinetics between aptamer-bound redox reporters and the electrode surface. Because, in theory, aptamers can be selected for nearly any target of interest, E-AB sensors have far-reaching potential for diagnostic and biomedical applications. However, a remaining critical weakness in the platform lies in the time-dependent, spontaneous degradation of the bioelectronic interface. This progressive degradation-seen in part as a continuous drop in faradaic current from aptamer-attached redox reporters-limits the in vivo operational life of E-AB sensors to less than 12 h, prohibiting their long-term application for continuous molecular monitoring in humans. In this work, we study the effects of nuclease action on the signaling lifetime of E-AB sensors, to determine whether the progressive signal loss is caused by hydrolysis of DNA aptamers and thus the loss of signaling moieties from the sensor surface. We continuously interrogate sensors deployed in several undiluted biological fluids at 37 °C and inject nuclease to reach physiologically relevant concentrations. By employing both naturally occurring d-DNA and the nuclease-resistant enantiomer l-DNA, we determine that within the current lifespan of state-of-the-art E-AB sensors, nuclease hydrolysis is not the dominant cause of sensor signal loss under the conditions we tested. Instead, signal loss is driven primarily by the loss of monolayer elements-both blocking alkanethiol and aptamer monolayers-from the electrode surface. While use of l-DNA aptamers may extend the E-AB operational life in the long term, the critical issue of passive monolayer loss must be addressed before those effects can be seen.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Humanos , Hidrólise
14.
Nucleic Acids Res ; 49(5): 2450-2459, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33733652

RESUMO

Chromatin structures (and modulators thereof) play a central role in genome organization and function. Herein, we report that thymine DNA glycosylase (TDG), an essential enzyme involved in DNA repair and demethylation, has the capacity to alter chromatin structure directly through its physical interactions with DNA. Using chemically defined nucleosome arrays, we demonstrate that TDG induces decompaction of individual chromatin fibers upon binding and promotes self-association of nucleosome arrays into higher-order oligomeric structures (i.e. condensation). Chromatin condensation is mediated by TDG's disordered polycationic N-terminal domain, whereas its C-terminal domain antagonizes this process. Furthermore, we demonstrate that TDG-mediated chromatin condensation is reversible by growth arrest and DNA damage 45 alpha (GADD45a), implying that TDG cooperates with its binding partners to dynamically control chromatin architecture. Finally, we show that chromatin condensation by TDG is sensitive to the methylation status of the underlying DNA. This new paradigm for TDG has specific implications for associated processes, such as DNA repair, DNA demethylation, and transcription, and general implications for the role of DNA modification 'readers' in controlling chromatin organization.


Assuntos
Cromatina/enzimologia , Timina DNA Glicosilase/metabolismo , Cromatina/química , Metilação de DNA , Humanos , Domínios Proteicos , Timina DNA Glicosilase/química
15.
ACS Synth Biol ; 10(1): 209-212, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33347747

RESUMO

To overcome technical challenges associated with the use of DNA strand-displacement circuits in vivo, including degradation by cellular nucleases, researchers are increasingly turning to bio-orthogonal l-DNA. Although enhanced stability and improved performance of l-DNA-based circuits within living cells are often implied, direct experimental evidence has not been provided. Herein, we directly compare the functional stability and kinetics of d-DNA and l-DNA strand-displacement in live cells for the first time. We show that l-DNA strand-displacement reaction systems have minimal "leak", fast reaction kinetics, and prolonged stability inside living cells as compared to conventional d-DNA. Furthermore, using "heterochiral" strand-displacement, we demonstrate that biostable l-DNA reaction components can be easily interfaced with native DNA inside cells. Overall, our results strongly support the broader adoption of l-DNA in the field of DNA molecular circuitry, especially for in vivo applications.


Assuntos
DNA/química , Carbocianinas/química , DNA/metabolismo , Células HeLa , Humanos , Microscopia de Fluorescência , Conformação de Ácido Nucleico , Estereoisomerismo , Raios Ultravioleta
16.
J Am Chem Soc ; 142(36): 15331-15339, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32805113

RESUMO

Biology relies almost exclusively on homochiral building blocks to drive the processes of life. Yet cross-chiral interactions can occur between macromolecules of the opposite handedness, including a previously described polymerase ribozyme that catalyzes the template-directed synthesis of enantio-RNA. The present study sought to optimize and generalize this activity, employing in vitro evolution to select cross-chiral polymerases that use either mono- or trinucleotide substrates that are activated as the 5'-triphosphate. There was only modest improvement of the former activity, but dramatic improvement of the latter, which enables the trinucleotide polymerase to react 102-103-fold faster than its ancestor and to accept substrates with all possible sequence combinations. The evolved ribozyme can assemble long RNAs from a mixture of trinucleotide building blocks, including a two-fragment form of the ancestral polymerase ribozyme. Further improvement of this activity could enable the generalized cross-chiral replication of RNA, which would establish a new paradigm for the chemical basis of Darwinian evolution.


Assuntos
RNA/biossíntese , Biocatálise , Conformação de Ácido Nucleico , Polimerização , RNA/química
17.
Molecules ; 25(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093258

RESUMO

Isothermal, enzyme-free amplification methods based on DNA strand-displacement reactions show great promise for applications in biosensing and disease diagnostics but operating such systems within biological environments remains extremely challenging due to the susceptibility of DNA to nuclease degradation. Here, we report a catalytic hairpin assembly (CHA) circuit constructed from nuclease-resistant l-DNA that is capable of unimpeded signal amplification in the presence of 10% fetal bovine serum (FBS). The superior biostability of the l-DNA CHA circuit relative to its native d-DNA counterpart was clearly demonstrated through a direct comparison of the two systems (d versus l) under various conditions. Importantly, we show that the l-CHA circuit can be sequence-specifically interfaced with an endogenous d-nucleic acid biomarker via an achiral peptide nucleic acid (PNA) intermediary, enabling catalytic detection of the target in FBS. Overall, this work establishes a blueprint for the detection of low-abundance nucleic acids in harsh biological environments and provides further impetus for the construction of DNA nanotechnology using l-oligonucleotides.


Assuntos
Técnicas Biossensoriais , DNA Catalítico/química , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Hibridização de Ácido Nucleico
18.
Nucleic Acids Res ; 48(4): 1669-1680, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31950158

RESUMO

The development of structure-specific RNA binding reagents remains a central challenge in RNA biochemistry and drug discovery. Previously, we showed in vitro selection techniques could be used to evolve l-RNA aptamers that bind tightly to structured d-RNAs. However, whether similar RNA-binding properties can be achieved using aptamers composed of l-DNA, which has several practical advantages compared to l-RNA, remains unknown. Here, we report the discovery and characterization of the first l-DNA aptamers against a structured RNA molecule, precursor microRNA-155, thereby establishing the capacity of DNA and RNA molecules of the opposite handedness to form tight and specific 'cross-chiral' interactions with each other. l-DNA aptamers bind pre-miR-155 with low nanomolar affinity and high selectivity despite the inability of l-DNA to interact with native d-RNA via Watson-Crick base pairing. Furthermore, l-DNA aptamers inhibit Dicer-mediated processing of pre-miRNA-155. The sequence and structure of l-DNA aptamers are distinct from previously reported l-RNA aptamers against pre-miR-155, indicating that l-DNA and l-RNA interact with the same RNA sequence through unique modes of recognition. Overall, this work demonstrates that l-DNA may be pursued as an alternative to l-RNA for the generation of RNA-binding aptamers, providing a robust and practical approach for targeting structured RNAs.


Assuntos
Aptâmeros de Nucleotídeos/genética , DNA/genética , Conformação de Ácido Nucleico , RNA/genética , Aptâmeros de Nucleotídeos/química , Pareamento de Bases/genética , Sítios de Ligação , DNA/química , Humanos , MicroRNAs/química , MicroRNAs/genética , RNA/química
19.
ACS Synth Biol ; 8(12): 2756-2759, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31670930

RESUMO

Heterochiral DNA strand-displacement reactions enable sequence-specific interfacing of oligonucleotide enantiomers, making it possible to interface native d-nucleic acids with molecular circuits built using nuclease-resistant l-DNA. To date, all heterochiral reactions have relied on peptide nucleic acid (PNA), which places potential limits on the scope and utility of this approach. Herein, we now report heterochiral strand-displacement in the absence of PNA, instead utilizing chimeric d/l-DNA complexes to interface oligonucleotides of the opposite chirality. We show that these strand-displacement reactions can be easily integrated into multicomponent heterochiral circuits, are compatible with both DNA and RNA inputs, and can be engineered to function in serum-supplemented medium. We anticipate that these new reactions will lead to a wider application of heterochiral strand-displacement, especially in the design of biocompatible nucleic acid circuits that can reliably operate within living systems.


Assuntos
DNA/química , Oligonucleotídeos/química , Ácidos Nucleicos Peptídicos/química
20.
Sci Rep ; 9(1): 15972, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685935

RESUMO

Despite recent evidence suggesting that histone lysine acetylation contributes to base excision repair (BER) in cells, their exact mechanistic role remains unclear. In order to examine the influence of histone acetylation on the initial steps of BER, we assembled nucleosome arrays consisting of homogeneously acetylated histone H3 (H3K18 and H3K27) and measured the repair of a site-specifically positioned 2'-deoxyuridine (dU) residue by uracil DNA glycosylase (UDG) and apurinic/apyrimidinic endonuclease 1 (APE1). We find that H3K18ac and H3K27ac differentially influence the combined activities of UDG/APE1 on compact chromatin, suggesting that acetylated lysine residues on the H3 tail domain play distinct roles in regulating the initial steps of BER. In addition, we show that the effects of H3 tail domain acetylation on UDG/APE1 activity are at the nucleosome level and do not influence higher-order chromatin folding. Overall, these results establish a novel regulatory role for histone H3 acetylation during the initiation of BER on chromatin.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Reparo do DNA , Histonas/metabolismo , Domínios Proteicos , Acetilação , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Histonas/química , Humanos , Modelos Moleculares , Conformação Molecular , Nucleossomos , Relação Estrutura-Atividade , Uracila-DNA Glicosidase/química , Uracila-DNA Glicosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...