Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(5): 2487-2499, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38180486

RESUMO

The solvophobicity-driven directional self-assembly of polymer-coated gold nanorods is a well-established phenomenon. Yet, the kinetics of this process, the origin of site-selectivity in the self-assembly, and the interplay of (attractive) solvophobic brush interactions and (repulsive) electrostatic forces are not fully understood. Herein, we use a combination of time-resolved (vis/NIR) extinction spectroscopy and finite-difference time-domain (FDTD) simulations to determine conversion profiles for the assembly of gold nanorods with polystyrene shells of distinct thicknesses into their (tip-to-tip) self-assembled structures. In particular, we demonstrate that the assembly process is highly protracted compared with diffusion-controlled rates, and we find that the assembly rate varies for different thickness values of the polymer shell. Our findings were rationalized using coarse-grained molecular dynamics simulations, which also corroborated the tip-to-tip preference in the self-assembly process, albeit with a uniform polymer coating. Utilizing the knowledge of quantified conversion rates for distinct colloidal species, we designed coassembling systems with different brush thicknesses, featuring "narcissistic" self-sorting behavior. This provides new perspectives for high-level supracolloidal self-assembly.

2.
ACS Appl Mater Interfaces ; 15(36): 43124-43134, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37665350

RESUMO

Despite recent developments, surface-enhanced Raman spectroscopy (SERS) applications face challenges in achieving both high sensitivity and uniform Raman signals over a large area. Using the directional self-assembly of plasmonic nanoparticles in lattice structures, we show how one can increase the SERS signal 43-fold over randomly aligned gold nanoparticles without relying on the photoluminescence of Rhodamine 6G. For this study, we have chosen the lattice constant for an off-resonant case that matches the lattice resonance and super-radiant plasmon mode along the particle chain. Supported by electromagnetic simulations, we systematically analyze the radiative components of the plasmon modes by varying the particle size while keeping the lattice periodicity constant. We perform polarization-dependent SERS measurements and compare them with other standard SERS excitation wavelengths. Using the self-assembled plasmonic particle lattice, we have developed an effective SERS substrate that provides a significantly higher signal with 73% less surface coverage. This colloidal approach enables the cost-effective and scalable fabrication of highly sensitive, uniform, and polarization-dependent SERS substrates.

3.
Adv Mater ; 35(40): e2303288, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37468165

RESUMO

Quasi-2D (q2D) conjugated polymers (CPs) are polymers that consist of linear CP chains assembled through non-covalent interactions to form a layered structure. In this work, the synthesis of a novel crystalline q2D polypyrrole (q2DPPy) film at the air/H2 SO4 (95%) interface is reported. The unique interfacial environment facilitates chain extension, prevents disorder, and results in a crystalline, layered assembly of protonated quinoidal chains with a fully extended conformation in its crystalline domains. This unique structure features highly delocalized π-electron systems within the extended chains, which is responsible for the low effective mass and narrow electronic bandgap. Thus, the temperature-dependent charge-transport properties of q2DPPy are investigated using the van der Pauw (vdP) method and terahertz time-domain spectroscopy (THz-TDS). The vdP method reveals that the q2DPPy film exhibits a semiconducting behavior with a thermally activated hopping mechanism in long-range transport between the electrodes. Conversely, THz-TDS reveals a band-like transport, indicating intrinsic charge transport up to a record short-range high THz mobility of ≈107.1 cm2 V-1 s-1 .

4.
Chemistry ; 29(57): e202302100, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37461223

RESUMO

Nanostructures intrinsically possessing two different structural or functional features, often called Janus nanoparticles, are emerging as a potential material for sensing, catalysis, and biomedical applications. Herein, we report the synthesis of plasmonic gold Janus nanostars (NSs) possessing a smooth concave pentagonal morphology with sharp tips and edges on one side and, contrastingly, a crumbled morphology on the other. The methodology reported herein for their synthesis - a single-step growth reaction - is different from any other Janus nanoparticle preparation involving either template-assisted growth or a masking technique. Interestingly, the coexistence of lower- and higher-index facets was found in these Janus NSs. The general paradigm for synthesizing gold Janus NSs was investigated by understanding the kinetic control mechanism with the combinatorial effect of all the reagents responsible for the structure. The optical properties of the Janus NSs were realized by corelating their extinction spectra with the simulated data. The size-dependent surface-enhanced Raman scattering (SERS) activity of these Janus NSs was studied with 1,4-BDT as the model analyte. Finite-difference time-domain simulations for differently sized particles revealed the distribution of electromagnetic hot-spots over the particles resulting in enhancement of the SERS signal in a size-dependent manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...