Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Neuroimaging ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778455

RESUMO

BACKGROUND AND PURPOSE: Slowly expanding lesions (SELs) are thought to represent a subset of chronic active lesions and have been associated with clinical disability, severity, and disease progression. The purpose of this study was to characterize SELs using advanced magnetic resonance imaging (MRI) measures related to myelin and neurite density on 7 Tesla (T) MRI. METHODS: The study design was retrospective, longitudinal, observational cohort with multiple sclerosis (n = 15). Magnetom 7T scanner was used to acquire magnetization-prepared 2 rapid acquisition gradient echo and advanced MRI including visualization of short transverse relaxation time component (ViSTa) for myelin, quantitative magnetization transfer (qMT) for myelin, and neurite orientation dispersion density imaging (NODDI). SELs were defined as lesions showing ≥12% of growth over 12 months on serial MRI. Comparisons of quantitative measures in SELs and non-SELs were performed at baseline and over time. Statistical analyses included two-sample t-test, analysis of variance, and mixed-effects linear model for MRI metrics between lesion types. RESULTS: A total of 1075 lesions were evaluated. Two hundred twenty-four lesions (21%) were SELs, and 216 (96%) of the SELs were black holes. At baseline, compared to non-SELs, SELs showed significantly lower ViSTa (1.38 vs. 1.53, p < .001) and qMT (2.47 vs. 2.97, p < .001) but not in NODDI measures (p > .27). Longitudinally, only ViSTa showed a greater loss when comparing SEL and non-SEL (p = .03). CONCLUSIONS: SELs have a lower myelin content relative to non-SELs without a difference in neurite measures. SELs showed a longitudinal decrease in apparent myelin water fraction reflecting greater tissue injury.

2.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-898834

RESUMO

Purpose@#To understand the effects of datasets with various parameters on pretrained network performance, the generalization capacity of the artificial neural network for myelin water imaging (ANN-MWI) is explored by testing datasets with various scan protocols (i.e., resolution and refocusing RF pulse shape) and types of disorders (i.e., neuromyelitis optica and edema). @*Materials and Methods@#ANN-MWI was trained to generate a T2 distribution, from which the myelin water fraction value was measured. The training and test datasets were acquired from healthy controls and multiple sclerosis patients using a multiecho gradient and spin-echo sequence with the same scan protocols. To test the generalization capacity of ANN-MWI, datasets with different settings were utilized.The datasets were acquired or generated with different resolutions, refocusing pulse shape, and types of disorders. For all datasets, the evaluation was performed in a white matter mask by calculating the normalized root-mean-squared error (NRMSE) between the results from the conventional method and ANN-MWI. Additionally, for the patient datasets, the NRMSE was calculated in each lesion mask. @*Results@#The results of ANN-MWI showed high reliability in generating myelin water fraction maps from the datasets with different resolutions. However, the increased errors were reported for the datasets with different refocusing pulse shapes and disorder types. Specifically, the region of lesions in edema patients reported high NRMSEs. These increased errors indicate the dependency of ANN-MWI on refocusing pulse flip angles and T 2 characteristics. @*Conclusion@#This study proposes information about the generalization accuracy of a trained network when applying deep learning to processing myelin water imaging.

3.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-891130

RESUMO

Purpose@#To understand the effects of datasets with various parameters on pretrained network performance, the generalization capacity of the artificial neural network for myelin water imaging (ANN-MWI) is explored by testing datasets with various scan protocols (i.e., resolution and refocusing RF pulse shape) and types of disorders (i.e., neuromyelitis optica and edema). @*Materials and Methods@#ANN-MWI was trained to generate a T2 distribution, from which the myelin water fraction value was measured. The training and test datasets were acquired from healthy controls and multiple sclerosis patients using a multiecho gradient and spin-echo sequence with the same scan protocols. To test the generalization capacity of ANN-MWI, datasets with different settings were utilized.The datasets were acquired or generated with different resolutions, refocusing pulse shape, and types of disorders. For all datasets, the evaluation was performed in a white matter mask by calculating the normalized root-mean-squared error (NRMSE) between the results from the conventional method and ANN-MWI. Additionally, for the patient datasets, the NRMSE was calculated in each lesion mask. @*Results@#The results of ANN-MWI showed high reliability in generating myelin water fraction maps from the datasets with different resolutions. However, the increased errors were reported for the datasets with different refocusing pulse shapes and disorder types. Specifically, the region of lesions in edema patients reported high NRMSEs. These increased errors indicate the dependency of ANN-MWI on refocusing pulse flip angles and T 2 characteristics. @*Conclusion@#This study proposes information about the generalization accuracy of a trained network when applying deep learning to processing myelin water imaging.

4.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-34480

RESUMO

OBJECTIVE: The aim of this study is to investigate abnormal findings of social brain network in Korean children with autism spectrum disorder (ASD) compared with typically developing children (TDC). METHODS: Functional magnetic resonance imaging (fMRI) was performed to examine brain activations during the processing of emotional faces (happy, fearful, and neutral) in 17 children with ASD, 24 TDC. RESULTS: When emotional face stimuli were given to children with ASD, various areas of the social brain relevant to social cognition showed reduced activation. Specifically, ASD children exhibited less activation in the right amygdala (AMY), right superior temporal sulcus (STS) and right inferior frontal gyrus (IFG) than TDC group when fearful faces were shown. Activation of left insular cortex and right IFG in response to happy faces was less in the ASD group. Similar findings were also found in left superior insular gyrus and right insula in case of neutral stimulation. CONCLUSION: These findings suggest that children with ASD have different processing of social and emotional experience at the neural level. In other words, the deficit of social cognition in ASD could be explained by the deterioration of the capacity for visual analysis of emotional faces, the subsequent inner imitation through mirror neuron system (MNS), and the ability to transmit it to the limbic system and to process the transmitted emotion.


Assuntos
Criança , Humanos , Tonsila do Cerebelo , Encéfalo , Transtorno do Espectro Autista , Cognição , Sistema Límbico , Imageamento por Ressonância Magnética , Neurônios-Espelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...