Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Pathol ; : 3009858241249108, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712876

RESUMO

Novel goose parvovirus (NGPV) is continuously threatening the global duck industry, as it causes short beak and dwarfism syndrome among different duck breeds. In this study, we investigated the viral pathogenesis in the tongue of affected ducks, as a new approach for deeper understanding of the syndrome. Seventy-three, 14- to 60-day-old commercial Pekin ducks were clinically examined. Thirty tissue pools of intestine and tongue (15 per tissue) were submitted for molecular identification. Clinical signs in the examined ducks were suggestive of parvovirus infection. All examined ducks had short beaks. Necrotic, swollen, and congested protruding tongues were recorded in adult ducks (37/73, 51%). Tongue protrusion without any marked congestion or swelling was observed in 20-day-old ducklings (13/73, 18%), and no tongue protrusion was observed in 15-day-old ducklings (23/73, 32%). Microscopically, the protruding tongues of adult ducks showed necrosis of the superficial epithelial layer with vacuolar degeneration. Glossitis was present in the nonprotruding tongues of young ducks, which was characterized by multifocal lymphoplasmacytic aggregates and edema in the propria submucosa. Immunohistochemical examination displayed parvovirus immunolabeling, mainly in the tongue propria submucosa. Based on polymerase chain reaction, goose parvovirus was detected in 9 out of 15 tongue sample pools (60%). Next-generation sequencing confirmed the presence of a variant goose parvovirus that is globally named NGPV and closely related to Chinese NGPV isolates. Novel insights are being gained from the study of NGPV pathogenesis in the tongue based on molecular and immunohistochemical identification.

2.
Eur J Pharm Biopharm ; 199: 114279, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38588829

RESUMO

Our study aimed to develop a virucidal throat spray using bioactive compounds and excipients, focusing on the preparation of Curcumin (CUR) in a self-nano emulsifying drug delivery system (SNEDDS). Two molecular docking studies against SARS-CoV-2 targets guided the selection of proper oil, surfactant, co-surfactant, and natural bioactive that would maximize the antiviral activity of the throat spray. Two self-nanoemulsifying formulas that were diluted with different vehicles to prepare eight CUR-loaded SNESNS (self-nanoemulsifying self-nanosuspension) formulas. In vitro characterization studies and in vitro anti-SARS-CoV-2 effect revealed that the optimal formula, consisted of 20 % Anise oil, 70 % Tween 80, 10 % PEG 400, and 0.1 %w/w CUR, diluted with DEAE-Dx. Preclinical toxicity tests on male rats confirmed the safety of a mild throat spray dose (5 µg/mL CUR). In a rat model of acute pharyngitis induced by ammonia, post-treatment with the optimal formula of CUR loaded SNESNS for one week significantly reduced elevated proinflammatory markers (TNF-α, IL6, MCP1, and IL8). In conclusion, our CUR-loaded SNESNS formula, at 5 µg/mL concentration, shows promising effect as a prophylactic throat spray against SARS-CoV-2 and as a treatment for pharyngitis.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Excipientes , Faringite , SARS-CoV-2 , Animais , Faringite/tratamento farmacológico , Excipientes/química , Ratos , Masculino , Antivirais/administração & dosagem , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2/efeitos dos fármacos , COVID-19/prevenção & controle , Curcumina/administração & dosagem , Curcumina/farmacologia , Humanos , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Sistemas de Liberação de Fármacos por Nanopartículas/química , Chlorocebus aethiops
3.
BMC Microbiol ; 24(1): 43, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291363

RESUMO

Epothilone derivatives have been recognized as one of the most powerful anticancer drugs towards solid tumors, for their unique affinity to bind with ß-tubulin microtubule arrays, stabilizing their disassembly, causing cell death. Sornagium cellulosum is the main source for Epothilone, however, the fermentation bioprocessing of this myxobacteria is the main challenge for commercial production of Epothilone. The metabolic biosynthetic potency of epothilone by Aspergillus fumigatus, an endophyte of Catharanthus roseus, raises the hope for commercial epothilone production, for their fast growth rate and feasibility of manipulating their secondary metabolites. Thus, nutritional optimization of A. fumigatus for maximizing their epothilone productivity under solid state fermentation process is the objective. The highest yield of epothilone was obtained by growing A. fumigatus on orange peels under solid state fermentation (2.2 µg/g), bioprocessed by the Plackett-Burman design. The chemical structure of the extracted epothilone was resolved from the HPLC and LC-MS/MS analysis, with molecular mass 507.2 m/z and identical molecular fragmentation pattern of epothilone B of S. cellulosum. The purified A. fumigatus epothilone had a significant activity towards HepG2 (IC50 0.98 µg/ml), Pancl (IC50 1.5 µg/ml), MCF7 (IC50 3.7 µg/ml) and WI38 (IC50 4.6 µg/ml), as well as a strong anti-tubulin polymerization activity (IC50 0.52 µg/ml) compared to Paclitaxel (2.0 µg/ml). The effect of A. fumigatus epothilone on the immigration ability of HepG2 cells was assessed, as revealed from the wound closure of the monolayer cells that was estimated by ~ 63.7 and 72.5%, in response to the sample and doxorubicin, respectively, compared to negative control. From the Annexin V-PI flow cytometry results, a significant shift of the normal cells to the apoptosis was observed in response to A. fumigatus epothilone by ~ 20 folds compared to control cells, with the highest growth arrest of the HepG2 cells at the G0-G1 stage.


Assuntos
Antineoplásicos , Epotilonas , Epotilonas/farmacologia , Epotilonas/metabolismo , Tubulina (Proteína)/metabolismo , Aspergillus fumigatus , Fermentação , Cromatografia Líquida , Polimerização , Espectrometria de Massas em Tandem , Antineoplásicos/farmacologia , Ciclo Celular
4.
Histochem Cell Biol ; 161(2): 165-181, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37847258

RESUMO

Burn injuries pose a significant healthcare burden worldwide, often leading to long-term disabilities and reduced quality of life. To explore the impacts of the transplantation of mesenchymal stem cells (MSCs) on the healing of burns and the levels of serum cytokines, 60 fully grown Sprague-Dawley rats were randomly divided into three groups (n = 20 each): group I (control), group II (burn induction), and group III (burn induction + bone marrow (BM)-MSC transplantation). Groups II and III were further divided into four subgroups (n = 5 each) based on euthanasia duration (7, 14, 21, and 28 days post transplant). The experiment concluded with an anesthesia overdose for rat death. After 7, 14, 21, and 28 days, the rats were assessed by clinical, laboratory, and histopathology investigations. The results revealed significant improvements in burn healing potentiality in the group treated with MSC. Furthermore, cytokine levels were measured, with significant increases in interleukin (IL)-6 and interferon alpha (IFN) observed, while IL-10 and transforming growth factor beta (TGF-ß) decreased at 7 days and increased until 28 days post burn. Also, the group that underwent the experiment exhibited increased levels of pro-inflammatory cytokines and the anti-inflammatory cytokine IL-10 when compared to the control group. Histological assessments showed better re-epithelialization, neovascularization, and collagen deposition in the experimental group, suggesting that MSC transplantation in burn wounds may promote burn healing by modulating the immune response and promoting tissue regeneration.


Assuntos
Transplante de Células-Tronco Mesenquimais , Pele , Ratos , Animais , Pele/metabolismo , Interleucina-10/metabolismo , Qualidade de Vida , Ratos Sprague-Dawley , Cicatrização , Citocinas/metabolismo
5.
Cytokine ; 173: 156433, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972479

RESUMO

Severe COVID-19 pneumonia is a principal cause of death due to cascade of hyper inflammatory condition that leading to lung damage. Therefore, an effective therapy to countercurrent the surge of uncontrolled inflammation is mandatory to propose. Anti-interlukin-6 receptor antagonist monoclonal therapy, tocilizumab (TCZ) showed potential results in COVID-19 patients. This study aimed to emphasize the factors associated with mortality in COVID-19 patients that treated with tocilizumab and may influence the level of serum IL-6. A retrospective cohort study included all patients with clinical parameters that pointed to presence of cytokines storm and treated with one or more doses of TCZ beside the regular protocol of COVID-19 pneumonia. The factors that influence the mortality in addition to the level of serum IL-6 were analyzed. A total of 377 patients were included, 69.5 % of them received only one dose of TCZ which started mainly at the third day of admission. The mortality rate was 29.44 %. Regardless the time of starting TCZ, just one dose was fair enough to prevent bad consequence; OR = 0.04, P = 0.001.However, in spite of protective action of TCZ, older age and female sex were significant risk factors for mortality, P = 0.001 and 0.01 respectively, as well heart disease. Moreover, increasing the level of neutrophil, AST and IL-6 were associated with bad prognosis. In the same line, treatment with ivermectin, chloroquine and remdesivir inversely affect the level of IL-6. Early treatments of COVID-19 pneumonia with at least one dose of tocilizumab minimized the fatality rate.


Assuntos
COVID-19 , Humanos , Feminino , SARS-CoV-2 , Citocinas , Estudos Retrospectivos , Interleucina-6 , Tratamento Farmacológico da COVID-19 , Prognóstico
6.
Microorganisms ; 11(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37317117

RESUMO

Multidrug-resistant microorganisms have become a significant public health threat, and traditional antibiotics are becoming ineffective. Photodynamic therapy (PDT) is a promising alternative that utilizes photosensitizers and light to produce Reactive Oxygen Species (ROS) that can kill microorganisms. Zinc phthalocyanine (ZnPc) is a promising photosensitizer due to its strong affinity for encapsulation in nanoemulsions and its antimicrobial properties. In this study, nanoemulsion was prepared using Miglyol 812N, a surfactant, and distilled water to dissolve hydrophobic drugs such as ZnPc. The nanoemulsion was characterized by its particle size, polydispersity index, Transmission Electron Microscope and Zeta potential, and the results showed that it was an efficient nanocarrier system that facilitated the solubilization of hydrophobic drugs in water. The use of ZnPc encapsulated in the nanoemulsion produced through the spontaneous emulsification method resulted in a significant reduction in cell survival percentages of gram-positive Staphylococcus aureus and gram-negative Escherichia coli by 85% and 75%, respectively. This may be attributed to the more complex cell membrane structure of E. coli compared to S. aureus. This demonstrates the potential of nanoemulsion-based PDT as an effective alternative to traditional antibiotics for treating multidrug-resistant microorganisms.

7.
Clin Case Rep ; 11(6): e7382, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37273670

RESUMO

Key Clinical Message: Our case report demonstrates extremely uncommon data associated with MIS-A, such as cholestatic jaundice, anemia, and quickly progressing pneumonia. IVIG and pulse steroid medications are the best treatments for improving clinical outcomes. Abstract: We report a case of multiple organ dysfunctions due to MIS-A in an adult with a history of suspected COVID-19. Our case demonstrates extremely uncommon data associated with MIS-A, such as cholestatic jaundice, anemia, and quickly progressing pneumonia. IVIG and pulse steroid medications are the best treatments for improving clinical outcomes.

8.
Mar Drugs ; 22(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38248655

RESUMO

Marine algal extracts exhibit a potent inhibitory effect against several enveloped and non-enveloped viruses. The infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has several adverse effects, including an increased mortality rate. The anti-COVID-19 agents are still limited; this issue requires exploring novel, effective anti-SARS-CoV-2 therapeutic approaches. This study investigated the antiviral activity of an aqueous extract of Ulva lactuca, which was collected from the Gulf of Suez, Egypt. The aqueous extract of Ulva lactuca was characterized by high-performance liquid chromatography (HPLC), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Energy Dispersive X-ray (EDX) analyses. According to the HPLC analysis, the extract comprises several sugars, mostly rhamnose (32.88%). The FTIR spectra showed numerous bands related to the functional groups. EDX analysis confirmed the presence of different elements, such as oxygen (O), carbon (C), sulfur (S), magnesium (Mg), potassium (K), calcium (Ca), and sodium (Na), with different concentrations. The aqueous extract of U. lactuca (0.0312 mg/mL) exhibited potent anti-SARS-CoV-2 activity via virucidal activity, inhibition of viral replication, and interference with viral adsorption (% inhibitions of 64%, 33.3%, and 31.1%, respectively). Consequently, ulvan could be a promising compound for preclinical study in the drug development process to combat SARS-CoV-2.


Assuntos
Produtos Biológicos , COVID-19 , Algas Comestíveis , Ulva , SARS-CoV-2 , Antivirais/farmacologia
9.
Sci Rep ; 12(1): 22352, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572690

RESUMO

SARS-CoV-2 virus has rapidly spread worldwide since December 2019, causing COVID-19 disease. In-hospital mortality is a common indicator for evaluating treatment outcomes. Therefore, the developing and validating a simple score system from observational data could assist in modulating the management procedures. A retrospective cohort study included all data records of patients with positive PCR for SARS-CoV-2. The factors that associated with mortality were analyzed, then allocation of potential predictors of mortality was executed using different logistic regression modeling, subsequently scoring system was developed from the most weighted predictors. The mortality rate of patients with COVID-19 pneumonia was 28.5% and 28.74%, respectively. The most significant factors that affected in-hospital mortality were old age (> 60 years), delay in hospital admission (> 4 days), high neutrophil/lymphocyte ratio "NLR" (> 3); higher computed tomography severity score; and CT-SS (> 20), in addition to using remdesivir and tocilizumab in the treatment protocol (P < 0.001 for all). The validity of the newly performed score was significant; the AUC was 85%, P < 0.001, and its prognostic utility was good; the AUC was 75%, P < 0.001. The prognostic utility of newly developed score system (EGY.Score) was excellent and could be used to adjust the treatment strategy of highly at-risk patients with COVID-19 pneumonia.


Assuntos
COVID-19 , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , SARS-CoV-2 , Mortalidade Hospitalar , Egito/epidemiologia , Prognóstico
10.
Life (Basel) ; 12(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36362871

RESUMO

Various mutations have accumulated since the first genome sequence of SARS-CoV2 in 2020. Mutants of the virus carrying the D614G and P681R mutations in the spike protein are increasingly becoming dominant all over the world. The two mutations increase the viral infectivity and severity of the disease. This report describes an in silico design of SARS-CoV-2 multi-epitope carrying the spike D614G and P681R mutations. The designed vaccine harbors the D614G mutation that increases viral infectivity, fitness, and the P681R mutation that enhances the cleavage of S to S1 and S2 subunits. The designed multi-epitope vaccine showed an antigenic property with a value of 0.67 and the immunogenicity of the predicted vaccine was calculated and yielded 3.4. The vaccine construct is predicted to be non-allergenic, thermostable and has hydrophilic nature. The combination of the selected CTL and HTL epitopes in the vaccine resulted in 96.85% population coverage globally. Stable interactions of the vaccine with Toll-Like Receptor 4 were tested by docking studies. The multi-epitope vaccine can be a good candidate against highly infecting SARS-CoV-2 variants.

11.
J King Saud Univ Sci ; 34(8): 102296, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36062198

RESUMO

Objective: The study purpose was to compare the anti- novel coronavirus disease 2019 (COVID-19) property of chlorogenic acid (CGA) and Zinc oxide nanoparticles (ZnO-NP) with the new valid synthesized complex of ZnO /CGA-NPs. Methods: The facile mixing method was utilized to prepare ZnO/CGA-NPs. The in vitro effect of different ZnO/CGA-NPs concentrations on papain-like protease (PLpro) and spike protein- receptor-binding domain (RBD) was measured by ELISA technique. The compounds effects on SARS-CoV2 were determined on viral entry, replication, and assembly by using plaque reduction assay, qPCR, and ELISA techniques. Their individual effects or mixed with hydroxychloroquine (HCQ) on erythrocytes (RBCs) and leukocytes (WBCs) were evaluated by routine cell culture technique. Finally, turbidity and agar well diffusion assays were done to evaluate their antimicrobial properties against Escherichia. coli, klebsila pneumonia, Streptococcus pyogenes, Staphylococcus aureus, and Candida albicans. Results: The results confirmed that the uniformly dispersed ZnO-NPs were converted to aggregated form of ZnO/CGA-NPs upon the addition of CGA. The inhibitory concentration 50 (IC50) of ZnO /CGA-NPs against RBD, angiotensin-converting enzyme 2 (ACE2) and PLpro were 1647.7, 323.3 µg/mL and 38.7 µg/mL, respectively. Also, it inhibited E-gene, RdRp gene, E-protein, and spike protein with an IC50 of 0.11, 0.13, 0.48, and 0.37 µg/mL, respectively. It acted as an antimicrobial against all tested organisms with a minimum inhibitory concentration (MIC) of 26 µg/mL. Finally, ZnO/CGA-NPs Complex (0.1 IC50) prevented the cytotoxic effect of HCQ on RBCs and WBC by 92.3 and 90 %, respectively. Conclusion: ZnO/CGA-NPs Complex can be considered as a new anti- severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) compound.

12.
Front Microbiol ; 13: 923137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875574

RESUMO

In December 2019, a mysterious viral pneumonia first developed in Wuhan, China, resulting in a huge number of fatal cases. This pneumonia, which was named COVID-19, was attributed to a novel coronavirus, SARS-CoV-2. The emerging SARS-CoV-2 mutations pose the greatest risk to human health because they could result in an increase in the COVID-19 severity or the failure of current vaccines. One of these notable mutations is the SARS-CoV-2 Delta variant (B.1.617) that was first detected in India and has rapidly expanded to 115 countries worldwide. Consequently, in this study, we performed next-generation sequencing and phylogenetic analysis of SARS-CoV-2 during the third wave of the pandemic to determine the SARS-CoV-2 variants of concern (VOC) prevalence in Egypt. We observed several mutational patterns, revealing that SARS-CoV-2 evolution has expanded in Egypt with a considerable increase in the number of VOC. Therefore, the Egyptian authorities should take an appropriate approach to investigate the compatibility of already employed vaccines with this VOC and to examine the efficacy of the existing therapeutic regimen against new SARS-CoV-2 variants.

13.
J Genet Eng Biotechnol ; 20(1): 70, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35543892

RESUMO

BACKGROUND: Several SARS-CoV-2 variants with increased transmissibility and/or potential immune escape have emerged and rapidly spread worldwide. Ongoing surveillance analyses are performed worldwide to designate new variants of concern (VOC) of coronavirus. MAIN TEXT: This report identifies the first Egyptian patient with a confirmed SARS-CoV-2 omicron variant. The patient showed positivity on reverse transcriptase-polymerase chain reaction and full genome sequencing was performed to confirm the variant. The mutations found in the variant were compared with the GISAID reference strain hCoV-19/Wuhan/WIV04/2019. Genome BLAST showed the highest similarity to omicron variants isolated in South Africa. Phylogenetic analysis revealed that the variant belongs to the 21K clade. CONCLUSIONS: The study indicates the importance of information-sharing among global public health partners. Moreover the importance of implementation of full genome sequencing to rapidly identify and track the new SARS-CoV-2 variants.

14.
Infect Genet Evol ; 100: 105278, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35367360

RESUMO

The recently emerging coronavirus, severe acute respiratory syndrome coronavirus 2, (SARS-CoV-2) is the causative agent of the Coronavirus disease 2019 (COVID-19) pandemic. Since its discovery in the city of Wahan, China, SARS-CoV-2 has spread rapidly to invade all countries. In addition to its rapid transmission rate, it is characterized by high genetic mutation rates. The aim of this study is to provide an effective method for the isolation and propagation of SARS-CoV-2 in cell lines without any induction of genetic variations. In this study, we isolated SARS-CoV-2 from oro-nasopharyngeal swabs collected from Egyptian patients who were clinically diagnosed with COVID-19. Molecular identification of SARS-CoV-2 was performed by Real-Time Quantitative Reverse Transcription PCR (RT-qPCR). The isolated virus was propagated on Vero E6 cells without applying serial viral passages to avoid any variation of the viral genome. The replication and propagation were confirmed by the results of both RT-qPCR and the cytopathic effect (CPE). Moreover, SARS-CoV-2 was completely inactivated chemically using beta-propiolactone (ßPL). Whole genome sequencing (WGS) of the propagated virus was performed in order to investigate mutational patterns. The genome sequences recovered in 2020 (n = 18) were similar to the reference strain, Wuhan-Hu-1, and were clustered as clade 20A. However, the genomic sequences recovered in 2021 (n = 2) were clustered as clade 21J. These two sequences are considered the first Delta (B.1.617.2) variants detected in Egypt. This study provides a reference for researchers in Egypt to isolate and propagate SARS-CoV-2 easily and efficiently. Furthermore, the prevalence of the SARS-CoV-2 delta variant in Egypt necessitates continuous monitoring of the efficacy of the applied treatment protocol and the effectiveness of current vaccines against such variants of concern (VOC).


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Egito/epidemiologia , Humanos , Pandemias , SARS-CoV-2/genética
15.
Sci Rep ; 12(1): 5846, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393477

RESUMO

The medicinal potential of marine invertebrates' bioactive components that may act as anti-COVID-19 demonstrated promising results. Ophiocoma dentata, which is common in the Red Sea, is one such source. Therefore, this study aimed to isolate a new compound from the brittle star, Ophiocoma dentata, and evaluate its efficacy as anti-COVID-19 in-silico and in-vitro. Standard procedures were followed in order to assess the isolated compound's preliminary toxicity and anti-inflammatory properties. Computer virtual screening technology through molecular docking and ADMET studies was conducted as well as a new steroid derivative was isolated for the first time, named 5α-cholesta-4(27), 24-dien-3ß, 23 ß-diol. Investigation of the Anti-Covid-19 activity of the isolated compound using a Plaque reduction assay revealed 95% inhibition at a concentration of 5 ng/µl (12.48 µM). Moreover, this compound showed an IC50 of 11,350 ± 1500 ng/ml against the normal fibroblast cells, indicating its safety. Interestingly, this compound exhibited anti-inflammatory activity with an IC50 of 51.92 ± 0.03 µg/ml compared to a reference drug's IC50 of 53.64 ± 0.01 µg/ml, indicating that this compound is a potent anti-inflammatory. In silico data have proved that the isolated compound is a promising viral inhibitor against SARS-CoV2 and is thus recommended as a future nature preventive and curative antiviral drug.


Assuntos
Tratamento Farmacológico da COVID-19 , Anti-Inflamatórios/farmacologia , Humanos , Simulação de Acoplamento Molecular , RNA Viral , SARS-CoV-2 , Esteroides
16.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35337173

RESUMO

The first outbreak in Wuhan, China, in December 2019 was reported about severe acute coronaviral syndrome 2 (SARS-CoV-2). The global coronavirus disease 2019 (COVID-19) pandemic in 2020 resulted in an extremely high potential for dissemination. No drugs are validated in large-scale studies for significant effectiveness in the clinical treatment of COVID-19 patients, despite the worsening trends of COVID-19. This study aims to design a simple and efficient cyclo-condensation reaction of 6-aminouracil derivatives 2a-e and isatin derivatives 1a-c to synthesize spiro-oxindoles 3a-d, 4a-e, and 5a-e. All compounds were tested in vitro against the SARS-CoV-2. Four spiro[indoline-3,5'-pyrido[2,3-d:6,5-d']dipyrimidine derivatives 3a, 4b, 4d, and 4e showed high activities against the SARS-CoV-2 in plaque reduction assay and were subjected to further RNA-dependent-RNA-polymerase (RdRp) and spike glycoprotein inhibition assay investigations. The four compounds exhibited potent inhibitory activity ranging from 40.23 ± 0.09 to 44.90 ± 0.08 nM and 40.27 ± 0.17 to 44.83 ± 0.16 nM, respectively, when compared with chloroquine as a reference standard, which showed 45 ± 0.02 and 45 ± 0.06 nM against RdRp and spike glycoprotein, respectively. The computational study involving the docking studies of the binding mode inside two proteins ((RdRp) (PDB: 6m71), and (SGp) (PDB: 6VXX)) and geometrical optimization used to generate some molecular parameters were performed for the most active hybrids.

17.
J Ethnopharmacol ; 291: 115038, 2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35151836

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Red sage (Lantana camara L.) (Verbenaceae) is a widely spread plant that was traditionally used in Brazil, India, Kenya, Thailand, Mexico, Nigeria, Australia and Southeast Asia for treating several ailments including rheumatism and leprosy. Despite its historical role in relieving respiratory diseases, limited studies progressed to the plant's probable inhibition to respiratory viruses especially after the striking spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. AIM OF THE STUDY: This study aimed to investigate the inhibitory activity of different L. camara cultivars to SARS-CoV-2, that was not previously inspected, and clarify their mechanisms of action in the metabolomics viewpoint, and to determine the biomarkers that are related to such activity using UPLC-MS/MS coupled to in vitro-studies and chemometric analysis. MATERIALS AND METHODS: Chemical profiling of different cultivars was accomplished via UPLC-MS/MS. Principle component analysis (PCA) and orthogonal projection to latent structures (OPLS) models were built using SIMCA® (multivariate data analysis software). Cytotoxicity and COVID-19 inhibitory activity testing were done followed by TaqMan Real-time RT-PCR (Reverse transcription polymerase chain reaction) assay that aimed to study extracts' effects on RNA-dependent RNA polymerase (RdRp) and E-genes expression levels. Detected biomarkers from OPLS analysis were docked into potential targets pockets to investigate their possible interaction patterns using Schrodinger® suite. RESULTS: UPLC-MS/MS analysis of different cultivars yielded 47 metabolites, most of them are triterpenoids and flavonoids. PCA plots revealed that inter-cultivar factor has no pronounced effect on the chemical profiles of extracts except for L. camara, cultivar Drap d'or flowers and leaves extracts as well as for L. camara cv Chelsea gem leaves extract. Among the tested extracts, flowers and leaves extracts of L. camara cv Chelsea gem, flowers extracts of L. camara cv Spreading sunset and L. camara cv Drap d'or showed the highest selectivity indices scoring 12.3, 10.1, 8.6 and 7.8, respectively, indicating their relative high safety and efficacy. Leaves and flowers extracts of L. camara cv Chelsea gem, flowers extracts of L. camara cv Spreading sunset and L. camara cv Drap d'or were the most promising inhibitors to viral plaques exhibiting IC50 values of 3.18, 3.67, 4.18 and 5.01 µg/mL, respectively. This was incremented by OPLS analysis that related their promising COVID-19 inhibitory activities to the presence of twelve biomarkers. Inhibiting the expression of RdRp gene is the major mechanism behind the antiviral activity of most extracts at almost all concentration levels. Molecular docking of the active biomarkers against RdRp revealed that isoverbascoside, luteolin-7,4'-O-diglucoside, camarolic acid and lantoic acid exhibited higher docking scores of -11.378, -10.64, -6.72 and -6.07 kcal/mol, respectively, when compared to remdesivir (-5.75 kcal/mol), thus these four compounds can serve as promising anti-COVID-19 candidates. CONCLUSION: Flowers and leaves extracts of four L. camara cultivars were recognized as rich sources of phytoconstituents possessing anti-COVID-19 activity. Combination of UPLC-MS/MS and chemometrics is a promising approach to detect chemical composition differences among the cultivars and correlate them to COVID-19 inhibitory activities allowing to pinpoint possible biomarkers. Further in-vitro and in-vivo studies are required to verify their activity.


Assuntos
Tratamento Farmacológico da COVID-19 , Lantana , Biomarcadores/análise , Quimiometria , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Lantana/química , Simulação de Acoplamento Molecular , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Folhas de Planta/química , SARS-CoV-2 , Espectrometria de Massas em Tandem
18.
Heliyon ; 8(2): e08864, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35128118

RESUMO

COVID-19 is an infectious disease caused by SARS-CoV-2 and has spread globally, resulting in the ongoing coronavirus pandemic. The current study aimed to analyze the clinical and epidemiological features of COVID-19 in Egypt. Oropharyngeal swabs were collected from 197 suspected patients who were admitted to the Army Hospital and confirmation of the positivity was performed by rRT-PCR assay. Whole genomic sequencing was conducted using Illumina iSeq 100® System. The average age of the participants was 48 years, of which 132 (67%) were male. The main clinical symptoms were pneumonia (98%), fever (92%), and dry cough (66%). The results of the laboratory showed that lymphocytopenia (79.2%), decreased levels of haemoglobin (77.7%), increased levels of interleukin 6, C-reactive protein, serum ferritin, and D-dimer (77.2%, 55.3%, 55.3%, and 25.9%, respectively), and leukocytopenia (25.9%) were more common. The CT findings showed that scattered opacities (55.8%) and ground-glass appearance (27.9%) were frequently reported. The recovered validated sequences (n = 144) were submitted to NCBI Virus GenBank. All sequenced viruses have at least 99% identity to Wuhan-Hu-1. All variants were GH clade, B.1 PANGO lineage, and L.GP.YP.HT haplotype. The most predominant subclade was D614G/Q57H/V5F/G823S. Our findings have aided in a deep understanding of COVID-19 evolution and identifying strains with unique mutational patterns in Egypt.

19.
Infect Genet Evol ; 97: 105191, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34923158

RESUMO

Recently, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) resulted in Coronavirus Disease 2019 (COVID-19) outbreak. A new SARS-CoV-2 strain is expected to emerge in late 2020, including B.1.1.7. The high transmission rate of SARS-CoV-2 B.1.1.7 has raised public health concerns in several countries. Hence, in this study, we assessed the sequencing of SARS-COV2 to reveals the prevalence of the SARS-CoV-2 Alpha variant (B 1.1.7) in Egypt. We found that the viral transmission of the alpha variant is expanding. Moreover, based on hospitalizations and case fatality rates, there is a potential for increasing severity. There was no effect on susceptibility to Emergency Use Authorization monoclonal antibody treatments. However, there was minimal impact on neutralization by convalescent and post-vaccination sera. Samples have been clustered into the 20D sub clade for the majority of them. The eight samples shown in our study are considered the first recorded samples with the Alpha variant in Egypt. Therefore, The Egyptian government, represented by the Ministry of Health, must take all measures to examine the compatibility of the currently used vaccines with this new strain and the feasibility of the treatment protocol presently used with such strains developed in the Arab Republic of Egypt.


Assuntos
COVID-19/epidemiologia , Monitoramento Epidemiológico , Genoma Viral , SARS-CoV-2/genética , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , COVID-19/imunologia , COVID-19/terapia , COVID-19/transmissão , Egito/epidemiologia , Humanos , Imunização Passiva , Filogenia , Prevalência , Saúde Pública , SARS-CoV-2/classificação , SARS-CoV-2/patogenicidade , Sequenciamento Completo do Genoma , Soroterapia para COVID-19
20.
Genes (Basel) ; 14(1)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36672847

RESUMO

BACKGROUND: Precision oncology has been increasingly used in clinical practice and rapidly evolving in the oncology field. Thus, this study was performed to assess the frequency of germline mutations in early and late onset familial breast cancer (BC) Egyptian patients using multi-gene panel sequencing to better understand the contribution of the inherited germline mutations in BC predisposition. Moreover, to determine the actionable deleterious mutations associated with familial BC that might be used as biomarker for early cancer detection. METHODS: Whole blood samples were collected from 101 Egyptian patients selected for BC family history, in addition to 50 age-matched healthy controls. A QIAseq targeted DNA panel (human BC panel) was used to assess the frequency of germline mutations. RESULTS: A total of 58 patients (57.4%) out of 101 were found to have 27 deleterious germline mutations in 11 cancer susceptibility genes. Of them, 32 (31.6%) patients carried more than one pathogenic mutation and each one carried at least one pathogenic mutation. The major genes harboring the pathogenic mutations were: ATM, BRCA2, BRCA1, VHL, MSH6, APC, CHEK2, MSH2, MEN1, PALB2, and MUTYH. Thirty-one patients (30.6%) had BRCA2 mutations and twenty (19.8%) had BRCA1 mutations. Our results showed that exon 10 and exon 11 harbored 3 and 5 mutations, respectively, in BRCA1 and BRCA2 genes. Our analysis also revealed that the VHL gene significantly co-occurred with each of the BRCA2 gene (p = 0.003, event ratio 11/21), the MSH2 gene (p = 0.01, 4/10), the CHEK2 gene (p = 0.02, 4/11), and the MSH6 gene (p = 0.04, 4/12). In addition, the APC gene significantly co-occurred with the MSH2 gene (p = 0.01, 3/7). Furthermore, there was a significant mutually exclusive event between the APC gene and the ATM gene (p = 0.04, 1/36). Interestingly, we identified population specific germline mutations in genes showing potentials for targeted therapy to meet the need for incorporating precision oncology into clinical practice. For example, the mutations identified in the ATM, APC, and MSH2 genes. CONCLUSIONS: Multi-gene panel sequencing was used to detect the deleterious mutations associated with familial BC, which in turns mitigate the essential need for implementing next generation sequencing technologies in precision oncology to identify cancer predisposing genes. Moreover, identifying DNA repair gene mutations, with focus on non-BRCA genes, might serve as candidates for targeted therapy and will be increasingly used in precision oncology.


Assuntos
Neoplasias da Mama , Mutação em Linhagem Germinativa , Humanos , Feminino , Neoplasias da Mama/genética , Egito , Proteína 2 Homóloga a MutS/genética , Predisposição Genética para Doença , Medicina de Precisão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...