Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; 23(1): e13859, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37128843

RESUMO

Exercise training prevents age-related decline in muscle function. Targeting epigenetic aging is a promising actionable mechanism and late-life exercise mitigates epigenetic aging in rodent muscle. Whether exercise training can decelerate, or reverse epigenetic aging in humans is unknown. Here, we performed a powerful meta-analysis of the methylome and transcriptome of an unprecedented number of human skeletal muscle samples (n = 3176). We show that: (1) individuals with higher baseline aerobic fitness have younger epigenetic and transcriptomic profiles, (2) exercise training leads to significant shifts of epigenetic and transcriptomic patterns toward a younger profile, and (3) muscle disuse "ages" the transcriptome. Higher fitness levels were associated with attenuated differential methylation and transcription during aging. Furthermore, both epigenetic and transcriptomic profiles shifted toward a younger state after exercise training interventions, while the transcriptome shifted toward an older state after forced muscle disuse. We demonstrate that exercise training targets many of the age-related transcripts and DNA methylation loci to maintain younger methylome and transcriptome profiles, specifically in genes related to muscle structure, metabolism, and mitochondrial function. Our comprehensive analysis will inform future studies aiming to identify the best combination of therapeutics and exercise regimes to optimize longevity.


Assuntos
Epigenoma , Transcriptoma , Humanos , Transcriptoma/genética , Epigenoma/genética , Músculo Esquelético/metabolismo , Exercício Físico/fisiologia , Perfilação da Expressão Gênica
2.
Genome Med ; 15(1): 59, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525279

RESUMO

BACKGROUND: Changes in cell-type composition of tissues are associated with a wide range of diseases and environmental risk factors and may be causally implicated in disease development and progression. However, these shifts in cell-type fractions are often of a low magnitude, or involve similar cell subtypes, making their reliable identification challenging. DNA methylation profiling in a tissue like blood is a promising approach to discover shifts in cell-type abundance, yet studies have only been performed at a relatively low cellular resolution and in isolation, limiting their power to detect shifts in tissue composition. METHODS: Here we derive a DNA methylation reference matrix for 12 immune-cell types in human blood and extensively validate it with flow-cytometric count data and in whole-genome bisulfite sequencing data of sorted cells. Using this reference matrix, we perform a directional Stouffer and fixed effects meta-analysis comprising 23,053 blood samples from 22 different cohorts, to comprehensively map associations between the 12 immune-cell fractions and common phenotypes. In a separate cohort of 4386 blood samples, we assess associations between immune-cell fractions and health outcomes. RESULTS: Our meta-analysis reveals many associations of cell-type fractions with age, sex, smoking and obesity, many of which we validate with single-cell RNA sequencing. We discover that naïve and regulatory T-cell subsets are higher in women compared to men, while the reverse is true for monocyte, natural killer, basophil, and eosinophil fractions. Decreased natural killer counts associated with smoking, obesity, and stress levels, while an increased count correlates with exercise and sleep. Analysis of health outcomes revealed that increased naïve CD4 + T-cell and N-cell fractions associated with a reduced risk of all-cause mortality independently of all major epidemiological risk factors and baseline co-morbidity. A machine learning predictor built only with immune-cell fractions achieved a C-index value for all-cause mortality of 0.69 (95%CI 0.67-0.72), which increased to 0.83 (0.80-0.86) upon inclusion of epidemiological risk factors and baseline co-morbidity. CONCLUSIONS: This work contributes an extensively validated high-resolution DNAm reference matrix for blood, which is made freely available, and uses it to generate a comprehensive map of associations between immune-cell fractions and common phenotypes, including health outcomes.


Assuntos
Metilação de DNA , Linfócitos T , Masculino , Humanos , Feminino , Linfócitos T/metabolismo , Fenótipo , Obesidade/metabolismo , Avaliação de Resultados em Cuidados de Saúde
3.
Eur J Sport Sci ; 23(2): 284-293, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34821541

RESUMO

Previous small-scale studies have shown an association between the COL5A1 gene and anterior cruciate ligament (ACL) injury risk. In this larger study, the genotype and allele frequency distributions of the COL5A1 rs12722 C/T and rs10628678 AGGG/deletion (AGGG/-) indel variants were compared between participants: (i) with ACL injury in independent and combined cohorts from South-Africa (SA) and Australia (AUS) vs controls (CON), and (ii) with any ligament (ALL) or only ACL injury in a Japanese (JPN) cohort vs CON. Samples were collected from SA (235 cases; 232 controls), AUS (362 cases; 80 controls) and JPN (500 cases; 1,403 controls). Genomic DNA was extracted and genotyped. Distributions were compared, and inferred haplotype analyses performed. No independent associations were noted for rs12722 or rs10628678 when the combined SA + AUS cohort was analysed. However, the C-deletion (rs12722-rs10628678) inferred haplotype was under-represented (p = 0.040, OR = 0.15, CI = 0.04-0.56), while the T-deletion inferred haplotype was over-represented in the female SA + AUS ACL participants versus controls (p < 0.001, OR = 4.74, CI = 1.66-13.55). Additionally, the rs12722 C/C genotype was under-represented in JPN CON vs ACL (p = 0.039, OR = 0.52, 0.27-1.00), while the rs10628678 -/- genotype was associated with increased risk of any ligament injuries (p = 0.035, OR = 1.31, CI = 1.02-1.68) in the JPN cohort. Collectively, these results highlight that a region within the COL5A1 3'-UTR is associated with ligament injury risk. This must be evaluated in larger cohorts and its functional relevance to the structure and capacity of ligaments and joint biomechanics be explored.Highlights The COL5A1 T-deletion inferred haplotype (rs12722-rs10628678) was associated with an increased risk of ACL rupture in the combined SA and AUS female participants.The COL5A1 C-deletion inferred haplotype (rs12722-rs10628678) was associated with a decreased risk of ACL rupture in the combined SA and AUS female participants.The COL5A1 rs12722 C/C and rs10628678 -/- genotypes were associated with increased risk of ACL rupture and of ligament injuries in JPN, respectively.A region within the COL5A1 3'-UTR is associated with risk of ligament injury, including ACL rupture, and therefore the functional significance of this region on ligament capacity and joint biomechanics requires further exploration.


Assuntos
Lesões do Ligamento Cruzado Anterior , Humanos , Feminino , África do Sul , Japão , Colágeno Tipo V/genética , Genótipo , Estudos de Casos e Controles
4.
BMJ Open ; 12(5): e060869, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35545400

RESUMO

INTRODUCTION: Gender affirming hormone therapy (GAHT) is increasingly used by transgender individuals and leads to shifts in sex hormone levels. Skeletal muscle is highly responsive to hormone activity, with limited data on the effects of GAHT on different human tissues. Here, we present the protocol for the GAME study (the effects of Gender Affirming hormone therapy on skeletal Muscle training and Epigenetics), which aims to uncover the effects of GAHT on skeletal muscle 'omic' profiles (methylomics, transcriptomics, proteomics, metabolomics) and markers of skeletal muscle health and fitness. METHODS AND ANALYSIS: This study is a prospective age-matched cohort study in transgender adults commencing GAHT (n=80) and age-matched individuals not commencing GAHT (n=80), conducted at Austin Health and Victoria University in Victoria, Australia. Assessments will take place prior to beginning GAHT and 6 and 12 months into therapies in adults commencing GAHT. Age-matched individuals will be assessed at the same time points. Assessments will be divided over three examination days, involving (1) aerobic fitness tests, (2) muscle strength assessments and (3) collection of blood and muscle samples, as well as body composition measurements. Standardised diets, fitness watches and questionnaires will be used to control for key confounders in analyses. Primary outcomes are changes in aerobic fitness and muscle strength, as well as changes in skeletal muscle DNA methylation and gene expression profiles. Secondary outcomes include changes in skeletal muscle characteristics, proteomics, body composition and blood markers. Linear mixed models will be used to assess changes in outcomes, while accounting for repeated measures within participants and adjusting for known confounders. ETHICS AND DISSEMINATION: The Austin Health Human Research Ethics Committee (HREC) and Victoria University HREC granted approval for this study (HREC/77146/Austin-2021). Findings from this project will be published in open-access, peer-reviewed journals and presented to scientific and public audiences. TRIAL REGISTRATION NUMBER: ACTRN12621001415897; Pre-results.


Assuntos
Pessoas Transgênero , Adulto , Estudos de Coortes , Hormônios , Humanos , Músculo Esquelético , Estudos Prospectivos , Vitória
5.
Nat Rev Genet ; 23(10): 585-605, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35501397

RESUMO

Over time, the human DNA methylation landscape accrues substantial damage, which has been associated with a broad range of age-related diseases, including cardiovascular disease and cancer. Various age-related DNA methylation changes have been described, including at the level of individual CpGs, such as differential and variable methylation, and at the level of the whole methylome, including entropy and correlation networks. Here, we review these changes in the ageing methylome as well as the statistical tools that can be used to quantify them. We detail the evidence linking DNA methylation to ageing phenotypes and the longevity strategies aimed at altering both DNA methylation patterns and machinery to extend healthspan and lifespan. Lastly, we discuss theories on the mechanistic causes of epigenetic ageing.


Assuntos
Epigênese Genética , Epigenoma , Envelhecimento/genética , Metilação de DNA , Epigenômica , Humanos
6.
J Orthop Res ; 38(3): 680-688, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31692049

RESUMO

Rotator cuff tendinopathy (RCT), anterior cruciate ligament (ACL) ruptures, and carpal tunnel syndrome (CTS), are examples of chronic (RCT and CTS) and acute (ACL ruptures) musculoskeletal soft tissue injuries. These injuries are multifactorial in nature, with several identified intrinsic and extrinsic risk factors. Previous studies have implicated specific sequence variants within genes encoding structural and regulatory components of the extracellular matrix of tendons and/ligaments to predispose individuals to these injuries. An example, includes the association of sequence variants within the apoptotic regulatory gene, caspase-8 (CASP8) with other musculoskeletal injury phenotypes, such as Achilles tendinopathy. The primary aim of this study was, therefore, to investigate previously implicated DNA sequence variants within CASP8: rs3834129 (ins/del) and rs1045485 (G/C), and the rs13113 (T/A) identified using a whole exome sequencing approach, with risk of musculoskeletal injury phenotypes (RCT, ACL ruptures, and CTS) in three independent studies. In addition, the aim was to implicate a CASP8 genomic interval in the modulation of risk of RCT, ACL ruptures, or CTS. It was found that the AA genotype of CASP8 rs13113 (T/A) was independently associated with increased risk for CTS. In addition, it was found that the del-C haplotype (rs3834129-rs1045485) was significantly associated with non-contact ACL ruptures, which is in alignment with previous research findings. Collectively, the results of this study implicate the apoptosis pathway as biologically significant in the underlying pathogenesis of musculoskeletal injury phenotypes. These findings should be repeated in larger sample cohorts and across different populations. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:680-688, 2020.


Assuntos
Apoptose , Caspase 8/genética , Doenças Musculoesqueléticas/genética , Doenças Musculoesqueléticas/patologia , Tendinopatia/genética , Tendão do Calcâneo/patologia , Adulto , Alelos , Lesões do Ligamento Cruzado Anterior/patologia , Síndrome do Túnel Carpal/genética , Síndrome do Túnel Carpal/metabolismo , Estudos de Casos e Controles , Caspase 8/metabolismo , Exoma , Matriz Extracelular/metabolismo , Feminino , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Lesões do Manguito Rotador/genética , Lesões do Manguito Rotador/metabolismo , África do Sul , Suécia , Tendinopatia/patologia , Sequenciamento Completo do Genoma , Adulto Jovem
7.
J Sports Sci ; 35(15): 1475-1483, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27541197

RESUMO

Several genetic loci have been associated with risk of Achilles tendon pathology (ATP) within South African and Australian populations. The aim of this study was, therefore, to evaluate eight previously implicated genetic variants in an independent British population. A total of 130 asymptomatic controls (CON) and 112 participants clinically diagnosed with ATP comprising 87 individuals with chronic Achilles tendinopathy (TEN) and 25 with Achilles tendon ruptures (RUP) were included. All participants were genotyped for variants within the COL5A1, MIR608, IL-1ß, IL-6 and CASP8 genes. Primary findings implicated COL5A1 and CASP8. Three inferred allele combinations constructed from COL5A1 rs12722, rs3196378 and rs71746744 were identified as risk modifiers. The T-C-D combination was associated with increased risk of ATP (P = 0.023) and RUP (P < 0.001), the C-A-I combination was associated with increased risk of ATP (P = 0.011), TEN (P = 0.011) and RUP (P = 0.011) and the C-C-D combination was associated with decreased risk of ATP (P = 0.011) and RUP (P = 0.004). The CASP8 rs3834129 DD genotype was associated with decreased risk of TEN (P = 0.020, odds ratio: 0.45, 95% confidence interval: 0.22-0.90) and the CASP8 I-G (rs3834129-rs1045485) inferred allele combination was associated with increased risk of TEN (P = 0.031). This study further highlights the importance of polymorphisms within COL5A1 and CASP8 in the aetiology of ATP.


Assuntos
Tendão do Calcâneo/lesões , Tendão do Calcâneo/patologia , Colágeno Tipo V/genética , Matriz Extracelular/metabolismo , Polimorfismo Genético , Ruptura/genética , Tendinopatia/genética , Adulto , Alelos , Estudos de Casos e Controles , Caspase 8/genética , Feminino , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Interleucina-1beta/genética , Interleucina-6/genética , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade , Tendinopatia/metabolismo , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...