Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACC Basic Transl Sci ; 6(8): 676-689, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34466754

RESUMO

Dysregulated inflammation following myocardial infarction (MI) leads to maladaptive healing and remodeling. The study characterized and evaluated a selective formyl peptide receptor 2 (FPR2) agonist BMS-986235 in cellular assays and in rodents undergoing MI. BMS-986235 activated G proteins and promoted ß-arrestin recruitment, enhanced phagocytosis and neutrophil apoptosis, regulated chemotaxis, and stimulated interleukin-10 and monocyte chemoattractant protein-1 gene expression. Treatment with BMS-986235 improved mouse survival, reduced left ventricular area, reduced scar area, and preserved wall thickness. Treatment increased macrophage arginase-1 messenger RNA and CD206 receptor levels indicating a proresolution phenotype. In rats following MI, BMS-986235 preserved viable myocardium, attenuated left ventricular remodeling, and increased ejection fraction relative to control animals. Therefore, FPR2 agonism improves post-MI healing, limits remodeling and preserves function, and may offer an innovative therapeutic option to improve outcomes.

2.
ACS Cent Sci ; 3(6): 639-646, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28691076

RESUMO

There is great interest in developing new modes of therapy for atherosclerosis to treat coronary heart disease and stroke, particularly ones that involve modulation of high-density lipoproteins (HDLs). Here, we describe a new supramolecular chemotype for altering HDL morphology and function. Guided by rational design and SAR-driven peptide sequence enumerations, we have synthesized and determined the HDL remodeling activities of over 80 cyclic d,l-α-peptides. We have identified a few distinct sequence motifs that are effective in vitro in remodeling human and mouse plasma HDLs to increase the concentration of lipid-poor pre-beta HDLs, which are key initial acceptors of cholesterol in the reverse cholesterol transport (RCT) process, and concomitantly promote cholesterol efflux from macrophage cells. Functional assays with various control peptides, such as scrambled sequences, linear and enantiomeric cyclic peptide variants, and backbone-modified structures that limit peptide self-assembly, provide strong support for the supramolecular mode of action. Importantly, when the lead cyclic peptide c[wLwReQeR] was administered to mice (ip), it also promoted the formation of small, lipid-poor HDLs in vivo, displayed good plasma half-life (∼6 h), did not appear to have adverse side effects, and exerted potent anti-inflammatory effects in an acute in vivo inflammation assay. Given that previously reported HDL remodeling peptides have been based on α-helical apoA-I mimetic architectures, the present study, involving a new structural class, represents a promising step toward new potential therapeutics to combat atherosclerosis.

3.
PLoS One ; 8(2): e53192, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383297

RESUMO

BACKGROUND: Chronic glucocorticoid excess has been linked to increased atherosclerosis and general cardiovascular risk in humans. The enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ßHSD1) increases active glucocorticoid levels within tissues by catalyzing the conversion of cortisone to cortisol. Pharmacological inhibition of 11ßHSD1 has been shown to reduce atherosclerosis in murine models. However, the cellular and molecular details for this effect have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: To examine the role of 11ßHSD1 in atherogenesis, 11ßHSD1 knockout mice were created on the pro-atherogenic apoE⁻/⁻ background. Following 14 weeks of Western diet, aortic cholesterol levels were reduced 50% in 11ßHSD1⁻/⁻/apoE⁻/⁻ mice vs. 11ßHSD1⁺/⁺/apoE⁻/⁻ mice without changes in plasma cholesterol. Aortic 7-ketocholesterol content was reduced 40% in 11ßHSD1⁻/⁻/apoE⁻/⁻ mice vs. control. In the aortic root, plaque size, necrotic core area and macrophage content were reduced ∼30% in 11ßHSD1⁻/⁻/apoE⁻/⁻mice. Bone marrow transplantation from 11ßHSD1⁻/⁻/apoE⁻/⁻ mice into apoE⁻/⁻ recipients reduced plaque area 39-46% in the thoracic aorta. In vivo foam cell formation was evaluated in thioglycollate-elicited peritoneal macrophages from 11ßHSD1⁺/⁺/apoE⁻/⁻ and 11ßHSD1⁻/⁻/apoE⁻/⁻ mice fed a Western diet for ∼5 weeks. Foam cell cholesterol levels were reduced 48% in 11ßHSD1⁻/⁻/apoE⁻/⁻ mice vs. control. Microarray profiling of peritoneal macrophages revealed differential expression of genes involved in inflammation, stress response and energy metabolism. Several toll-like receptors (TLRs) were downregulated in 11ßHSD1⁻/⁻/apoE⁻/⁻ mice including TLR 1, 3 and 4. Cytokine release from 11ßHSD1⁻/⁻/apoE⁻/⁻-derived peritoneal foam cells was attenuated following challenge with oxidized LDL. CONCLUSIONS: These findings suggest that 11ßHSD1 inhibition may have the potential to limit plaque development at the vessel wall and regulate foam cell formation independent of changes in plasma lipids. The diminished cytokine response to oxidized LDL stimulation is consistent with the reduction in TLR expression and suggests involvement of 11ßHSD1 in modulating binding of pro-atherogenic TLR ligands.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Células Espumosas/metabolismo , Glucocorticoides/metabolismo , Análise de Variância , Animais , Aterosclerose/prevenção & controle , Pressão Sanguínea , Transplante de Medula Óssea , Colesterol/metabolismo , Dieta Aterogênica , Cetocolesteróis/metabolismo , Lipídeos/sangue , Masculino , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptores Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...