Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473547

RESUMO

Organically coated steels are widely used in applications in which they are subjected to the natural environment and therefore require excellent corrosion resistance. Organic clearcoats are typically employed as a barrier that improves the overall corrosion resistance; however, they are typically derived from fossil fuel-based feedstock. A more sustainable alternative could be possible using sol-gel coatings. The application of a simple tetraethoxysilane (TEOS)-based sol-gel was applied to polyurethane-coated steels using a spray coater. The concentration of TEOS was altered to produce coatings containing either 2.5% or 10%. The 10% TEOS resulted in dense, homogeneous coatings that offered a significant improvement in corrosion resistance compared to an uncoated substrate. Whereas the 2.5% TEOS coatings were inhomogeneous and porous, which indicated a limitation of concentration required to produce a uniform coating. The successful demonstration of using a simple TEOS-based coating to improve the corrosion resistance of organically coated steel highlights the potential for further investigation into the use of sol-gels for these applications.

2.
Sci Rep ; 13(1): 5080, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977793

RESUMO

Copper potentially provides a cost-effective replacement for silver in printed electronic circuitry with diverse applications in healthcare, solar energy, IOT devices and automotive applications. The primary challenge facing copper is that it readily oxidizes to its non-conductive state during the sintering process. Photonic sintering offers a means of overcoming the oxidation by which rapid conversion from discrete nano-micro particles to fully or partially sintered products occurs. An experimental study of flash lamp sintering of mixed nano copper and mixed nano/ micro copper thick film screen printed structures on FTO coated glass was carried out. It shows that there may be multiple energy windows which can successfully sinter the thick film copper print preventing detrimental copper oxidation. Under optimum conditions, the conductivities achieved in under 1 s was (3.11-4.3 × 10-7 Ω m) matched those achieved in 90 min at 250 °C under reducing gas conditions, offering a significant improvement in productivity and reduced energy demand. Also present a good film stability of a 14% increase in line resistance of 100 N material, around 10% for the 50N50M ink and only around 2% for the 20N80M.

3.
ACS Appl Mater Interfaces ; 13(34): 41034-41045, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34412473

RESUMO

This study presents a process for preparation of cellulose-lignin barrier coatings for hot-dip galvanized (HDG) steel by aqueous electrophoretic deposition. Initially, a solution of softwood kraft lignin and diethylene glycol monobutyl ether was used to prepare an aqueous dispersion of colloidal lignin particles (CLPs) via solvent exchange. Analysis of the dispersion showed that it comprised submicron particles (D = 146 nm) with spherical morphologies and colloidal stability (ζ-potential = -40 mV). Following successful formation, the CLP dispersion was mixed with a suspension of TEMPO-oxidized cellulose nanofibers (TOCN, 1 and 2 g·L-1) at a fixed volumetric ratio (1:1, TOCN-CLPs), and biopolymers were deposited onto HDG steel surfaces at different potentials (0.5 and 3 V). The effects of these variables on coating formation, dry adhesion, and electrochemical properties (3.5% NaCl) were investigated. The scanning electron microscopy results showed that coalescence of CLPs occurs during the drying of composite coatings, resulting in formation of a barrier layer on HDG steel. The scanning vibrating electrode technique results demonstrated that the TOCN-CLP layers reduced the penetration of the electrolyte (3.5% NaCl) to the metal-coating interface for at least 48 h of immersion, with a more prolonged barrier performance for 3 V-deposited coatings. Additional electrochemical impedance spectroscopy studies showed that all four coatings provided increased levels of charge transfer resistance (Rct)-compared to bare HDG steel-although coatings deposited at a higher potential (3 V) and a higher TOCN concentration provided the maximum charge transfer resistance after 15 days of immersion (13.7 cf. 0.2 kΩ·cm2 for HDG steel). Overall, these results highlight the potential of TOCN-CLP biopolymeric composites as a basis for sustainable corrosion protection coatings.


Assuntos
Celulose/química , Lignina/química , Nanofibras/química , Aço/química , Corrosão , Capacitância Elétrica , Oxirredução/efeitos dos fármacos , Propriedades de Superfície
4.
Sensors (Basel) ; 19(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443375

RESUMO

Building energy consumption accounts for 30%-45% of the global energy demand. With an ever-increasing world population, it has now become essential to minimize the energy consumption for the future of the environment. One of the most crucial aspects in this regard is the utilization of sensing and environmental monitoring technologies in buildings as these technologies provide stakeholders, such as owners, designers, managers, and occupants, with important information regarding the energy performance, safety and cost-effectiveness of the building. With the global sensors market value predicted to exceed $190 billion by 2021 and the number of sensors deployed worldwide forecasted to reach the '1 Trillion' mark by 2025, a state-of-the-art review of various commercially-viable sensor devices and the wide range of communication technologies that complement them is highly desirable. This paper provides an insight into various sensing and environmental monitoring technologies commonly deployed in buildings by surveying different sensor technologies, wired and wireless communication technologies, and the key selection parameters and strategies for optimal sensor placement. In addition, we review the key characteristics and limitations of the most prominent battery technologies in use today, different energy harvesting sources and commercial off-the-shelf solutions, and various challenges and future perspectives associated with the application of sensing and environmental monitoring technologies within buildings.

5.
Materials (Basel) ; 11(11)2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30373145

RESUMO

This work demonstrates a sequential deposition of lead iodide followed by methylammonium iodide using the industrially compatible slot-die coating method that produces homogeneous pin-hole free films without the use of the highly toxic dimethylformamide. This is achieved through the careful selection and formulation of the solvent system and coating conditions for both the lead iodide layer and the methylammonium iodide coating. The solvent system choice is found to be critical to achieving good coating quality, conversion to the final perovskite and for the film morphology formed. A range of alcohols are assessed as solvent for methylammonium iodide formulations for use in slot-die coating. A dimethylsulfoxide solvent system for the lead iodide layer is shown which is significantly less toxic than the dimethylformamide solvent system commonly used for lead iodide deposition, which could find utility in high throughput manufacture of perovskite solar cells.

6.
R Soc Open Sci ; 5(5): 172158, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29892402

RESUMO

The fabrication of perovskite solar cells in an N-I-P structure with compact titanium dioxide blocking, mesoporous titanium dioxide scaffold, single-step perovskite and hole-transport layers deposited using the slot-die coating technique is reported. Devices on fluorine-doped tin oxide-coated glass substrates with evaporated gold top contacts and four slot-die-coated layers are demonstrated, and best cells reach stabilized power conversion efficiencies of 7%. This work demonstrates the suitability of slot-die coating for the production of layers within this perovskite solar cell stack and the potential to transfer to large area and roll-to-roll manufacturing processes.

7.
Adv Mater ; 29(33)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28657152

RESUMO

A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3'″-di(2-octyldodecyl)-2,2';5',2″;5″,2'″-quaterthiophen-5,5'″-diyl)] (PffBT4T-2OD) as a donor polymer blended with either the nonfullerene acceptor EH-IDTBR or the fullerene derivative, [6,6]-phenyl C71 butyric acid methyl ester (PC71 BM) as electron acceptors is reported. Inverted PffBT4T-2OD:EH-IDTBR blend solar cell fabricated without any processing additive achieves power conversion efficiencies (PCEs) of 9.5 ± 0.2%. The devices exhibit a high open circuit voltage of 1.08 ± 0.01 V, attributed to the high lowest unoccupied molecular orbital (LUMO) level of EH-IDTBR. Photoluminescence quenching and transient absorption data are employed to elucidate the ultrafast kinetics and efficiencies of charge separation in both blends, with PffBT4T-2OD exciton diffusion kinetics within polymer domains, and geminate recombination losses following exciton separation being identified as key factors determining the efficiency of photocurrent generation. Remarkably, while encapsulated PffBT4T-2OD:PC71 BM solar cells show significant efficiency loss under simulated solar irradiation ("burn in" degradation) due to the trap-assisted recombination through increased photoinduced trap states, PffBT4T-2OD:EH-IDTBR solar cell shows negligible burn in efficiency loss. Furthermore, PffBT4T-2OD:EH-IDTBR solar cells are found to be substantially more stable under 85 °C thermal stress than PffBT4T-2OD:PC71 BM devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...