Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 108(23): 235003, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-23003964

RESUMO

The conditions required for the production of isolated attosecond pulses from relativistically oscillating mirrors (ROM) are investigated numerically and experimentally. In simulations, carrier-envelope-phase-stabilized three-cycle pulses are found to be sufficient to produce isolated attosecond pulses, while two-cycle pulses will predominantly lead to isolated attosecond pulses even in the absence of carrier-envelope stabilization. Using a state-of-the-art laser system delivering three-cycle pulses at multiple-terawatt level, we have generated higher harmonics up to 70 eV photon energy via the ROM mechanism. The observed spectra are in agreement with theoretical expectations and highlight the potential of few-cycle-driven ROM harmonics for intense isolated attosecond pulse generation for performing extreme ultraviolet-pump extreme ultraviolet-probe experiments.

2.
Rev Sci Instrum ; 81(3): 033301, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20370164

RESUMO

We report on new charge calibrations and linearity tests with high-dynamic range for eight different scintillating screens typically used for the detection of relativistic electrons from laser-plasma based acceleration schemes. The absolute charge calibration was done with picosecond electron bunches at the ELBE linear accelerator in Dresden. The lower detection limit in our setup for the most sensitive scintillating screen (KODAK Biomax MS) was 10 fC/mm(2). The screens showed a linear photon-to-charge dependency over several orders of magnitude. An onset of saturation effects starting around 10-100 pC/mm(2) was found for some of the screens. Additionally, a constant light source was employed as a luminosity reference to simplify the transfer of a one-time absolute calibration to different experimental setups.

3.
Phys Rev Lett ; 95(13): 134801, 2005 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-16197142

RESUMO

We demonstrate a new particle acceleration mechanism using 800 nm laser radiation to accelerate relativistic electrons in a semi-infinite vacuum. The experimental demonstration is the first of its kind and is a proof of principle for the concept of laser-driven particle acceleration in a structure loaded vacuum. We observed up to 30 keV energy modulation over a distance of 1000 lambda, corresponding to a 40 MeV/m peak gradient. The energy modulation was observed to scale linearly with the laser electric field and showed the expected laser-polarization dependence. Furthermore, as expected, laser acceleration occurred only in the presence of a boundary that limited the laser-electron interaction to a finite distance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...