Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 120: 111224, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38740233

RESUMO

Early-life critical periods allow initial sensory experience to remodel brain circuitry so that synaptic connectivity can be optimized to environmental input. In the Drosophila juvenile brain, olfactory sensory neuron (OSN) synaptic glomeruli are pruned by glial phagocytosis in dose-dependent response to early odor experience during a well-defined critical period. Extracellular signal-regulated kinase (ERK) separation of phases-based activity reporter of kinase (SPARK) biosensors reveal experience-dependent signaling in glia during this critical period. Glial ERK-SPARK signaling is depressed by removal of Draper receptors orchestrating glial phagocytosis. Cell-targeted genetic knockdown of glial ERK signaling reduces olfactory experience-dependent glial pruning of the OSN synaptic glomeruli in a dose-dependent mechanism. Noonan Syndrome is caused by gain-of-function mutations in protein tyrosine phosphatase non-receptor type 11 (PTPN11) inhibiting ERK signaling, and a glial-targeted patient-derived mutation increases experience-dependent glial ERK signaling and impairs experience-dependent glial pruning of the OSN synaptic glomeruli. We conclude that critical period experience drives glial ERK signaling that is required for dose-dependent pruning of brain synaptic glomeruli, and that altered glial ERK signaling impairs this critical period mechanism in a Noonan Syndrome disease model.


Assuntos
Proteínas de Drosophila , Sistema de Sinalização das MAP Quinases , Neuroglia , Animais , Neuroglia/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Sinapses/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fagocitose
2.
J Neurosci ; 44(12)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38267256

RESUMO

Imaging brain learning and memory circuit kinase signaling is a monumental challenge. The separation of phases-based activity reporter of kinase (SPARK) biosensors allow circuit-localized studies of multiple interactive kinases in vivo, including protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) signaling. In the precisely-mapped Drosophila brain learning/memory circuit, we find PKA and ERK signaling differentially enriched in distinct Kenyon cell connectivity nodes. We discover that potentiating normal circuit activity induces circuit-localized PKA and ERK signaling, expanding kinase function within new presynaptic and postsynaptic domains. Activity-induced PKA signaling shows extensive overlap with previously selective ERK signaling nodes, while activity-induced ERK signaling arises in new connectivity nodes. We find targeted synaptic transmission blockade in Kenyon cells elevates circuit-localized ERK induction in Kenyon cells with normally high baseline ERK signaling, suggesting lateral and feedback inhibition. We discover overexpression of the pathway-linking Meng-Po (human SBK1) serine/threonine kinase to improve learning acquisition and memory consolidation results in dramatically heightened PKA and ERK signaling in separable Kenyon cell circuit connectivity nodes, revealing both synchronized and untapped signaling potential. Finally, we find that a mechanically-induced epileptic seizure model (easily shocked "bang-sensitive" mutants) has strongly elevated, circuit-localized PKA and ERK signaling. Both sexes were used in all experiments, except for the hemizygous male-only seizure model. Hyperexcitable, learning-enhanced, and epileptic seizure models have comparably elevated interactive kinase signaling, suggesting a common basis of use-dependent induction. We conclude that PKA and ERK signaling modulation is locally coordinated in use-dependent spatial circuit dynamics underlying seizure susceptibility linked to learning/memory potential.


Assuntos
Aprendizagem , Transdução de Sinais , Animais , Feminino , Masculino , Humanos , Aprendizagem/fisiologia , Transdução de Sinais/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Encéfalo/metabolismo , Drosophila/metabolismo , Convulsões
3.
eNeuro ; 9(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35301221

RESUMO

Dynamic functional connectivity within brain circuits requires coordination of intercellular signaling and intracellular signal transduction. Critical roles for cAMP-dependent protein kinase A (PKA) signaling are well established in the Drosophila mushroom body (MB) learning and memory circuitry, but local PKA activity within this well-mapped neuronal network is uncharacterized. Here, we use an in vivo PKA activity sensor (PKA-SPARK) to test spatiotemporal regulatory requirements in the MB axon lobes. We find immature animals have little detectable PKA activity, whereas postcritical period adults show high field-selective activation primarily in just 3/16 defined output regions. In addition to the age-dependent PKA activity in distinct α'/ß' lobe nodes, females show sex-dependent elevation compared with males in these same restricted regions. Loss of neural cell body Fragile X mental retardation protein (FMRP) and Rugose [human Neurobeachin (NBEA)] suppresses localized PKA activity, whereas overexpression (OE) of MB lobe PKA-synergist Meng-Po (human SBK1) promotes PKA activity. Elevated Meng-Po subverts the PKA age-dependence, with elevated activity in immature animals, and spatial-restriction, with striking γ lobe activity. Testing circuit signaling requirements with temperature-sensitive shibire (human Dynamin) blockade, we find broadly expanded PKA activity within the MB lobes. Using transgenic tetanus toxin to block MB synaptic output, we find greatly heightened PKA activity in virtually all MB lobe fields, although the age-dependence is maintained. We conclude spatiotemporally restricted PKA activity signaling within this well-mapped learning/memory circuit is age-dependent and sex-dependent, driven by FMRP-Rugose pathway activation, temporally promoted by Meng-Po kinase function, and restricted by output neurotransmission providing network feedback.


Assuntos
Proteínas de Drosophila , Corpos Pedunculados , Animais , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retroalimentação , Feminino , Aprendizagem/fisiologia , Masculino
4.
Cell Rep ; 33(2): 108266, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053340

RESUMO

Fragile X mental retardation protein (FMRP) promotes cyclic AMP (cAMP) signaling. Using an in vivo protein kinase A activity sensor (PKA-SPARK), we find that Drosophila FMRP (dFMRP) and human FMRP (hFMRP) enhance PKA activity in a central brain learning and memory center. Increasing neuronal PKA activity suppresses FMRP in Kenyon cells, demonstrating an FMRP-PKA negative feedback loop. A patient-derived R140Q FMRP point mutation mislocalizes PKA-SPARK activity, whereas deletion of the RNA-binding arginine-glycine-glycine (RGG) box (hFMRP-ΔRGG) produces fibrillar PKA-SPARK assemblies colocalizing with ribonucleoprotein (RNP) and aggregation (thioflavin T) markers, demonstrating fibrillar partitioning of cytosolic protein aggregates. hFMRP-ΔRGG reduces dFMRP levels, indicating RGG-independent regulation. Short-term hFMRP-ΔRGG induction produces activated PKA-SPARK puncta, whereas long induction drives fibrillar assembly. Elevated temperature disassociates hFMRP-ΔRGG aggregates and blocks activated PKA-SPARK localization. These results suggest that FMRP regulates compartmentalized signaling via complex assembly, directing PKA activity localization, with FMRP RGG box RNA binding restricting separation via low-complexity interactions.


Assuntos
Encéfalo/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Retroalimentação Fisiológica , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Memória , RNA/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Biomarcadores/metabolismo , Agregação Celular , Citosol/metabolismo , Drosophila melanogaster/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Humanos , Corpos Pedunculados/metabolismo , Mutação/genética , Ribonucleoproteínas/metabolismo
5.
Neurobiol Dis ; 127: 53-64, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30771457

RESUMO

Recent work shows Fragile X Mental Retardation Protein (FMRP) drives the translation of very large proteins (>2000 aa) mediating neurodevelopment. Loss of function results in Fragile X syndrome (FXS), the leading heritable cause of intellectual disability (ID) and autism spectrum disorder (ASD). Using the Drosophila FXS disease model, we discover FMRP positively regulates the translation of the very large A-Kinase Anchor Protein (AKAP) Rugose (>3000 aa), homolog of ASD-associated human Neurobeachin (NBEA). In the central brain Mushroom Body (MB) circuit, where Protein Kinase A (PKA) signaling is necessary for learning/memory, FMRP loss reduces Rugose levels and targeted FMRP overexpression elevates Rugose levels. Using a new in vivo transgenic PKA activity reporter (PKA-SPARK), we find FMRP loss reduces PKA activity in MB Kenyon cells whereas FMRP overexpression elevates PKA activity. Consistently, loss of Rugose reduces PKA activity, but Rugose overexpression has no independent effect. A well-established PKA output is regulation of F-actin cytoskeleton dynamics. In the FXS disease model, F-actin is aberrantly accumulated in MB lobes and single MB Kenyon cells. Consistently, Rugose loss results in similar F-actin accumulation. Moreover, targeted FMRP, Rugose and PKA overexpression all result in increased F-actin accumulation in the MB circuit. These findings uncover a FMRP-Rugose-PKA mechanism regulating actin cytoskeleton. This study reveals a novel FMRP mechanism controlling neuronal PKA activity, and demonstrates a shared mechanistic connection between FXS and NBEA associated ASD disease states, with a common link to PKA and F-actin misregulation in brain neural circuits. SIGNIFICANCE STATEMENT: Autism spectrum disorder (ASD) arises from a wide array of genetic lesions, and it is therefore critical to identify common underlying molecular mechanisms. Here, we link two ASD states; Neurobeachin (NBEA) associated ASD and Fragile X syndrome (FXS), the most common inherited ASD. Using established Drosophila disease models, we find Fragile X Mental Retardation Protein (FMRP) positively regulates translation of NBEA homolog Rugose, consistent with a recent advance showing FMRP promotes translation of very large proteins associated with ASD. FXS exhibits reduced cAMP induction, a potent activator of PKA, and Rugose/NBEA is a PKA anchor. Consistently, we find brain PKA activity strikingly reduced in both ASD models. We discover this pathway regulation controls actin cytoskeleton dynamics in brain neural circuits.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Actinas/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Aprendizagem/fisiologia , Memória/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila , Proteína do X Frágil da Deficiência Intelectual/genética , Corpos Pedunculados/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Regulação para Cima
6.
Front Mol Neurosci ; 10: 440, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375303

RESUMO

Fragile X syndrome (FXS) is the leading monogenic cause of autism and intellectual disability. The disease arises through loss of fragile X mental retardation protein (FMRP), which normally exhibits peak expression levels in early-use critical periods, and is required for activity-dependent synaptic remodeling during this transient developmental window. FMRP canonically binds mRNA to repress protein translation, with targets that regulate cytoskeleton dynamics, membrane trafficking, and trans-synaptic signaling. We focus here on recent advances emerging in these three areas from the Drosophila disease model. In the well-characterized central brain mushroom body (MB) olfactory learning/memory circuit, FMRP is required for activity-dependent synaptic remodeling of projection neurons innervating the MB calyx, with function tightly restricted to an early-use critical period. FMRP loss is phenocopied by conditional removal of FMRP only during this critical period, and rescued by FMRP conditional expression only during this critical period. Consistent with FXS hyperexcitation, FMRP loss defects are phenocopied by heightened sensory experience and targeted optogenetic hyperexcitation during this critical period. FMRP binds mRNA encoding Drosophila ESCRTIII core component Shrub (human CHMP4 homolog) to restrict Shrub translation in an activity-dependent mechanism only during this same critical period. Shrub mediates endosomal membrane trafficking, and perturbing Shrub expression is known to interfere with neuronal process pruning. Consistently, FMRP loss and Shrub overexpression targeted to projection neurons similarly causes endosomal membrane trafficking defects within synaptic boutons, and genetic reduction of Shrub strikingly rescues Drosophila FXS model defects. In parallel work on the well-characterized giant fiber (GF) circuit, FMRP limits iontophoretic dye loading into central interneurons, demonstrating an FMRP role controlling core neuronal properties through the activity-dependent repression of translation. In the well-characterized Drosophila neuromuscular junction (NMJ) model, developmental synaptogenesis and activity-dependent synaptic remodeling both require extracellular matrix metalloproteinase (MMP) enzymes interacting with the heparan sulfate proteoglycan (HSPG) glypican dally-like protein (Dlp) to restrict trans-synaptic Wnt signaling, with FXS synaptogenic defects alleviated by both MMP and HSPG reduction. This new mechanistic axis spanning from activity to FMRP to HSPG-dependent MMP regulation modulates activity-dependent synaptogenesis. We discuss future directions for these mechanisms, and intersecting research priorities for FMRP in glial and signaling interactions.

7.
Dev Biol ; 418(1): 40-54, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27546375

RESUMO

The size and shape of dendrite arbors are defining features of neurons and critical determinants of neuronal function. The molecular mechanisms establishing arborization patterns during development are not well understood, though properly regulated microtubule (MT) dynamics and polarity are essential. We previously found that FoxO regulates axonal MTs, raising the question of whether it also regulates dendritic MTs and morphology. Here we demonstrate that FoxO promotes dendrite branching in all classes of Drosophila dendritic arborization (da) neurons. FoxO is required both for initiating growth of new branches and for maintaining existing branches. To elucidate FoxO function, we characterized MT organization in both foxO null and overexpressing neurons. We find that FoxO directs MT organization and dynamics in dendrites. Moreover, it is both necessary and sufficient for anterograde MT polymerization, which is known to promote dendrite branching. Lastly, FoxO promotes proper larval nociception, indicating a functional consequence of impaired da neuron morphology in foxO mutants. Together, our results indicate that FoxO regulates dendrite structure and function and suggest that FoxO-mediated pathways control MT dynamics and polarity.


Assuntos
Dendritos/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Fatores de Transcrição Forkhead/metabolismo , Microtúbulos/metabolismo , Células Receptoras Sensoriais/citologia , Animais , Dendritos/ultraestrutura , Proteínas de Drosophila/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento
8.
Breast Cancer Res ; 12(5): R73, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20860838

RESUMO

INTRODUCTION: Rho GTPases are overexpressed and hyperactivated in human breast cancers. Deficiency of p190B RhoGAP, a major inhibitor of the Rho GTPases, inhibits mouse mammary tumor virus long terminal repeat (MMTV)-Neu/ErbB2 mammary tumor formation and progression in part through effects within the stromal environment, suggesting that p190B function is pro-tumorigenic. To further investigate the potential pro-tumorigenic actions of p190B, we examined the effects of exogenous p190B expression within the mammary epithelium on MMTV-Neu tumor formation and progression. METHODS: Tetracycline-regulatable p190B transgenic mice were bred to MMTV-Neu mice, and the effects of exogenous p190B expression on tumor latency, multiplicity, growth rates, angiogenesis, and metastasis were examined. The effects of exogenous p190B expression on cell-matrix adhesion and invasion were tested using non-transformed primary mammary epithelial cells (MECs). Rho GTPase activity, oxidative stress as an indicator of reactive oxygen species (ROS) production, and downstream signaling pathways were analyzed. RESULTS: Altered p190B expression resulted in a 2-fold increase in tumor multiplicity and a 3-fold increase in metastases compared to control mice indicating that exogenous p190B expression in the mammary epithelium promotes MMTV-Neu mammary tumor formation and progression. Interestingly, non-transformed primary MECs expressing exogenous p190B displayed increased adhesion to laminin and type IV collagen and formed invasive structures in a three-dimensional culture assay. Ras related C3 botulinum toxin 1 (Rac1)-GTP levels were elevated in p190B transgenic tumors whereas Ras homologous A (RhoA) and cell division cycle 42 (Cdc42)-GTP levels were not significantly altered. Rac1 activity affects production of ROS, which regulate transformation, metastasis, and oxidative stress. Protein carbonylation, which is indicative of oxidative stress, was elevated 1.75-fold in p190B transgenic tumors as compared to control tumors suggesting that exogenous p190B expression may affect Rac1-dependent ROS production. CONCLUSIONS: These studies indicate that paradoxically, p190B RhoGAP, a major inhibitor of the Rho GTPases in vitro, has pro-tumorigenic functions that enhance MMTV-Neu induced mammary tumor formation and metastasis. Furthermore, exogenous p190B expression enhances cell adhesion and invasion, which may facilitate metastasis. Rac1 activity and oxidative stress are elevated in tumors expressing exogenous p190B suggesting that p190B may promote tumorigenesis through a Rac1/ROS dependent mechanism.


Assuntos
Transformação Celular Neoplásica/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Neoplasias Mamárias Animais/metabolismo , Vírus do Tumor Mamário do Camundongo/metabolismo , Animais , Adesão Celular , Transformação Celular Neoplásica/genética , Junções Célula-Matriz , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Proteínas Ativadoras de GTPase/genética , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Animais/patologia , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Metástase Neoplásica , Neovascularização Patológica , Estresse Oxidativo , Espécies Reativas de Oxigênio , Proteína cdc42 de Ligação ao GTP/biossíntese , Proteínas rac1 de Ligação ao GTP/biossíntese , Proteína rhoA de Ligação ao GTP/biossíntese , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...