Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37104042

RESUMO

Seizures are a frequent complication of adult-type diffuse gliomas, and are often difficult to control with medications. Gliomas with mutations in isocitrate dehydrogenase 1 or 2 (IDHmut) are more likely than IDH-wild type (IDHwt) gliomas to cause seizures as part of their initial clinical presentation. However, whether IDHmut is also associated with seizures during the remaining disease course, and whether IDHmut inhibitors can reduce seizure risk, are unclear. Clinical multivariable analyses showed that preoperative seizures, glioma location, extent of resection, and glioma molecular subtype (including IDHmut status) all contributed to postoperative seizure risk in adult-type diffuse glioma patients, and that postoperative seizures were often associated with tumor recurrence. Experimentally, the metabolic product of IDHmut, d-2-hydroxyglutarate, rapidly synchronized neuronal spike firing in a seizure-like manner, but only when non-neoplastic glial cells were present. In vitro and in vivo models recapitulated IDHmut glioma-associated seizures, and IDHmut inhibitors currently being evaluated in glioma clinical trials inhibited seizures in those models, independent of their effects on glioma growth. These data show that postoperative seizure risk in adult-type diffuse gliomas varies in large part by molecular subtype, and that IDHmut inhibitors could play a key role in mitigating such risk in IDHmut glioma patients.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Recidiva Local de Neoplasia , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Convulsões/tratamento farmacológico , Convulsões/genética , Progressão da Doença , Isocitrato Desidrogenase/genética , Mutação
2.
J Cancer Res Clin Oncol ; 148(9): 2275-2285, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35467128

RESUMO

INTRODUCTION: Mutations in isocitrate dehydrogenase 1/2 (IDHmut) identify a subset of gliomas that exhibit epigenetic dysregulation via aberrant DNA methylation. These tumors are ultimately fatal and lack effective therapeutic strategies. Considering the epigenetic dysregulation of IDHmut gliomas, we hypothesized that epigenetic-targeting drugs may yield therapeutic benefits in gliomas bearing IDHmut. One set of targets includes the bromodomain and extraterminal (BET) family of transcriptional coactivators. METHODS: We used TCGA data from glioma patients to determine whether BET proteins affect patient survival differently based on IDH status. Follow-up experiments using a set of IDH wildtype/mutant glioma cultures, as well as an IDH wildtype glioblastoma cell line expressing exogenous R132H IDH1, focused on cell health assays to investigate whether IDHmut was associated with increased sensitivity to the BET inhibitor JQ1. Immunoblots were used to evaluate the molecular response to JQ1 in these cultures. RESULTS: We identified that high BRD4 expression associated with decreased survival only in IDHmut glioma patients. Cell viability analysis showed that IDHmut sensitized glioma cells to delayed cytotoxicity (10 days) in response to JQ1. Early effects of JQ1 (3 days) were primarily antiproliferative, with IDHmut glioma exhibiting a modest increase in sensitivity. Finally, exogenous R132H IDH1 expression in a resistant IDH wildtype cell line recapitulated the JQ1-mediated delayed cytotoxicity seen in our endogenous IDHmut glioma cells. CONCLUSION: Overall, these data suggest that BRD4 enhances malignancy primarily in gliomas bearing IDHmut and is associated with greater sensitivity to BET inhibition. The finding that BET inhibition primarily exhibits delayed cytotoxicity may be overlooked in conventional short endpoint dose-response assays. Follow-up mechanistic and animal studies will help address the translational potential of these findings.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutação , Proteínas Nucleares/genética , Fatores de Transcrição/genética
3.
Front Vet Sci ; 8: 716570, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660761

RESUMO

Robust and reproducible protocols to efficiently reprogram adult canine cells to induced pluripotent stem cells are still elusive. Somatic cell reprogramming requires global chromatin remodeling that is finely orchestrated spatially and temporally. Histone acetylation and deacetylation are key regulators of chromatin condensation, mediated by histone acetyltransferases and histone deacetylases (HDACs), respectively. HDAC inhibitors have been used to increase histone acetylation, chromatin accessibility, and somatic cell reprogramming in human and mice cells. We hypothesized that inhibition of HDACs in canine fibroblasts would increase their reprogramming efficiency by altering the epigenomic landscape and enabling greater chromatin accessibility. We report that a combined treatment of panobinostat (LBH589) and vitamin C effectively inhibits HDAC function and increases histone acetylation in canine embryonic fibroblasts in vitro, with no significant cytotoxic effects. We further determined the effect of this treatment on global chromatin accessibility via Assay for Transposase-Accessible Chromatin using sequencing. Finally, the treatment did not induce any significant increase in cellular reprogramming efficiency. Although our data demonstrate that the unique epigenetic landscape of canine cells does not make them amenable to cellular reprogramming through the proposed treatment, it provides a rationale for a targeted, canine-specific, reprogramming approach by enhancing the expression of transcription factors such as CEBP.

4.
J Neurooncol ; 154(2): 159-170, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34424450

RESUMO

INTRODUCTION: A large subset of diffusely infiltrative gliomas contains a gain-of-function mutation in isocitrate dehydrogenase 1 or 2 (IDH1/2mut) which produces 2-hydroxglutarate, an inhibitor of α-ketoglutarate-dependent DNA demethylases, thereby inducing widespread DNA and histone methylation. Because histone deacetylase (HDAC) enzymes are localized to methylated chromatin via methyl-binding domain proteins, IDH1/2mut gliomas may be more dependent on HDAC activity, and therefore may be more sensitive to HDAC inhibitors. METHODS: Six cultured patient-derived glioma cell lines, IDH1wt (n = 3) and IDH1mut (n = 3), were treated with an FDA-approved HDAC inhibitor, panobinostat. Cellular cytotoxicity and proliferation assays were conducted by flow cytometry. Histone modifications and cell signaling pathways were assessed using immunoblot and/or ELISA. RESULTS: IDH1mut gliomas exhibited marked upregulation of genes associated with the HDAC activity. Glioma cell cultures bearing IDH1mut were significantly more sensitive to the cytotoxic and antiproliferative effects of panobinostat, compared to IDH1wt glioma cells. Panobinostat caused a greater increase in acetylation of the histone residues H3K14, H3K18, and H3K27 in IDH1mut glioma cells. Another HDAC inhibitor, valproic acid, was also more effective against IDH1mut glioma cells. CONCLUSION: These data suggest that IDH1mut gliomas may be preferentially sensitive to HDAC inhibitors. Further, IDH1mut glioma cultures showed enhanced accumulation of acetylated histone residues in response to panobinostat treatment, suggesting a direct epigenetic mechanism for this sensitivity. This provides a rationale for further exploration of HDAC inhibitors against IDH1mut gliomas.


Assuntos
Glioma , Inibidores de Histona Desacetilases , Panobinostat/farmacologia , Glioma/tratamento farmacológico , Glioma/genética , Inibidores de Histona Desacetilases/farmacologia , Histonas , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutação
5.
Oncotarget ; 8(48): 84595-84609, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29137451

RESUMO

Activating transcription factor 5 (ATF5) is a cellular prosurvival transcription factor within the basic leucine zipper (bZip) family that is involved in cellular differentiation and promotes cellular adaptation to stress. Recent studies have characterized the oncogenic role of ATF5 in the development of several different types of cancer, notably glioblastoma. Preclinical assessment of a systemically deliverable dominant-negative ATF5 (dnATF5) biologic has found that targeting ATF5 results in tumor regression and tumor growth inhibition of glioblastoma xenografts in mouse models. In this review, we comprehensively and critically detail the current scientific literature on ATF5 in the context of cellular differentiation, survival, and response to stressors in normal tissues. Furthermore, we will discuss how the prosurvival role of ATF5 aides in cancer development, followed by current advances in targeting ATF5 using dominant-negative biologics, and perspectives on future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...