Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 22(12): 1767-1775, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28070124

RESUMO

Fast beta (20-28 Hz) electroencephalogram (EEG) oscillatory activity may be a useful endophenotype for studying the genetics of disorders characterized by neural hyperexcitability, including substance use disorders (SUDs). However, the genetic underpinnings of fast beta EEG have not previously been studied in a population of African-American ancestry (AA). In a sample of 2382 AA individuals from 482 families drawn from the Collaborative Study on the Genetics of Alcoholism (COGA), we performed a genome-wide association study (GWAS) on resting-state fast beta EEG power. To further characterize our genetic findings, we examined the functional and clinical/behavioral significance of GWAS variants. Ten correlated single-nucleotide polymorphisms (SNPs) (r2>0.9) located in an intergenic region on chromosome 3q26 were associated with fast beta EEG power at P<5 × 10-8. The most significantly associated SNP, rs11720469 (ß: -0.124; P<4.5 × 10-9), is also an expression quantitative trait locus for BCHE (butyrylcholinesterase), expressed in thalamus tissue. Four of the genome-wide SNPs were also associated with Diagnostic and Statistical Manual of Mental Disorders Alcohol Dependence in COGA AA families, and two (rs13093097, rs7428372) were replicated in an independent AA sample (Gelernter et al.). Analyses in the AA adolescent/young adult (offspring from COGA families) subsample indicated association of rs11720469 with heavy episodic drinking (frequency of consuming 5+ drinks within 24 h). Converging findings presented in this study provide support for the role of genetic variants within 3q26 in neural and behavioral disinhibition. These novel genetic findings highlight the importance of including AA populations in genetics research on SUDs and the utility of the endophenotype approach in enhancing our understanding of mechanisms underlying addiction susceptibility.


Assuntos
Alcoolismo/genética , Alcoolismo/fisiopatologia , Negro ou Afro-Americano/genética , Eletroencefalografia , Endofenótipos , Predisposição Genética para Doença , Adulto , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/fisiopatologia , Alcoolismo/diagnóstico , População Negra/genética , Encéfalo/fisiopatologia , Butirilcolinesterase/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
3.
N Z Med J ; 113(1112): 260-1, 2000 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-10914519
4.
Infect Immun ; 64(12): 5129-37, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8945556

RESUMO

The role of the surface membrane Zn-proteinase in protecting the cellular integrity of the macrophage parasite Leishmania mexicana amazonensis from intraphagolysosomal cytolysis was studied. These cells lose their infectivity to host macrophages after prolonged cultivation in axenic growth medium. The virulent and attenuated variants of the parasite cells were cloned. Failure of these attenuated parasite cells to survive inside macrophage phagolysosomes is associated with 20- to 50-fold reduction in the expression of surface gp63 protein. In situ inhibition of gp63 proteinase activity inside Leishmania-infected macrophage phagolysosomes with targeted delivery of an inhibitor of gp63 proteinase activity, 1,10-phenanthroline, selectively eliminated intracellular Leishmania amastigotes, further suggesting the importance of this proteinase in phagolysosomal survival of the parasite. An upstream sequence (US) of the gp63 gene was cloned in front of the bacterial chloramphenicol acetyltransferase (CAT) gene in plasmid pCATbasic. Transfection of L. mexicana amazonensis cells with this recombinant plasmid showed that expression of the CAT gene from this US is 15- to 20-fold higher in virulent clones than in avirulent clones of the parasite. Band shift analysis with the cloned US also showed that binding of protein(s) was 15- to 20-fold higher in virulent cell extract than in avirulent cell extract. Coating of attenuated cells or liposomes with proteolytically active gp63 protects them from degradation inside macrophage phagolysosomes. These results suggest a novel mechanism of survival of this phagolysosomal parasite with the help of its surface Zn-proteinase.


Assuntos
Endopeptidases/análise , Leishmania mexicana/enzimologia , Macrófagos/parasitologia , Fagossomos/parasitologia , Animais , Humanos , Leishmania mexicana/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...