Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 4(1): ycae015, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38456147

RESUMO

A persistent microbial seed bank is postulated to sustain the marine biosphere, and recent findings show that prokaryotic taxa present in the ocean's surface dominate prokaryotic communities throughout the water column. Yet, environmental conditions exert a tight control on the activity of prokaryotes, and drastic changes in these conditions are known to occur from the surface to deep waters. The simultaneous characterization of the total (DNA) and active (i.e. with potential for protein synthesis, RNA) free-living communities in 13 stations distributed across the tropical and subtropical global ocean allowed us to assess their change in structure and diversity along the water column. We observed that active communities were surprisingly more similar along the vertical gradient than total communities. Looking at the vertical connectivity of the active vs. the total communities, we found that taxa detected in the surface sometimes accounted for more than 75% of the active microbiome of bathypelagic waters (50% on average). These active taxa were generally rare in the surface, representing a small fraction of all the surface taxa. Our findings show that the drastic vertical change in environmental conditions leads to the inactivation and disappearance of a large proportion of surface taxa, but some surface-rare taxa remain active (or with potential for protein synthesis) and dominate the bathypelagic active microbiome.

2.
ISME Commun ; 4(1): ycae004, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38425478

RESUMO

The osmotrophic uptake of dissolved organic compounds in the ocean is considered to be dominated by heterotrophic prokaryotes, whereas the role of planktonic eukaryotes is still unclear. We explored the capacity of natural eukaryotic plankton communities to incorporate the synthetic amino acid L-homopropargylglycine (HPG, analogue of methionine) using biorthogonal noncanonical amino acid tagging (BONCAT), and we compared it with prokaryotic HPG use throughout a 9-day survey in the NW Mediterranean. BONCAT allows to fluorescently identify translationally active cells, but it has never been applied to natural eukaryotic communities. We found a large diversity of photosynthetic and heterotrophic eukaryotes incorporating HPG into proteins, with dinoflagellates and diatoms showing the highest percentages of BONCAT-labelled cells (49 ± 25% and 52 ± 15%, respectively). Among them, pennate diatoms exhibited higher HPG incorporation in the afternoon than in the morning, whereas small (≤5 µm) photosynthetic eukaryotes and heterotrophic nanoeukaryotes showed the opposite pattern. Centric diatoms (e.g. Chaetoceros, Thalassiosira, and Lauderia spp.) dominated the eukaryotic HPG incorporation due to their high abundances and large sizes, accounting for up to 86% of the eukaryotic BONCAT signal and strongly correlating with bulk 3H-leucine uptake rates. When including prokaryotes, eukaryotes were estimated to account for 19-31% of the bulk BONCAT signal. Our results evidence a large complexity in the osmotrophic uptake of HPG, which varies over time within and across eukaryotic groups and highlights the potential of BONCAT to quantify osmotrophy and protein synthesis in complex eukaryotic communities.

3.
Sci Data ; 11(1): 154, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302528

RESUMO

The Ocean microbiome has a crucial role in Earth's biogeochemical cycles. During the last decade, global cruises such as Tara Oceans and the Malaspina Expedition have expanded our understanding of the diversity and genetic repertoire of marine microbes. Nevertheless, there are still knowledge gaps regarding their diversity patterns throughout depth gradients ranging from the surface to the deep ocean. Here we present a dataset of 76 microbial metagenomes (MProfile) of the picoplankton size fraction (0.2-3.0 µm) collected in 11 vertical profiles covering contrasting ocean regions sampled during the Malaspina Expedition circumnavigation (7 depths, from surface to 4,000 m deep). The MProfile dataset produced 1.66 Tbp of raw DNA sequences from which we derived: 17.4 million genes clustered at 95% sequence similarity (M-GeneDB-VP), 2,672 metagenome-assembled genomes (MAGs) of Archaea and Bacteria (Malaspina-VP-MAGs), and over 100,000 viral genomic sequences. This dataset will be a valuable resource for exploring the functional and taxonomic connectivity between the photic and bathypelagic tropical and sub-tropical ocean, while increasing our general knowledge of the Ocean microbiome.


Assuntos
Metagenoma , Plâncton , Archaea/genética , Bactérias/genética , Oceanos e Mares , Plâncton/genética
4.
Nat Commun ; 15(1): 126, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168083

RESUMO

Microbial interactions are vital in maintaining ocean ecosystem function, yet their dynamic nature and complexity remain largely unexplored. Here, we use association networks to investigate possible ecological interactions in the marine microbiome among archaea, bacteria, and picoeukaryotes throughout different depths and geographical regions of the tropical and subtropical global ocean. Our findings reveal that potential microbial interactions change with depth and geographical scale, exhibiting highly heterogeneous distributions. A few potential interactions were global, meaning they occurred across regions at the same depth, while 11-36% were regional within specific depths. The bathypelagic zone had the lowest proportion of global associations, and regional associations increased with depth. Moreover, we observed that most surface water associations do not persist in deeper ocean layers despite microbial vertical dispersal. Our work contributes to a deeper understanding of the tropical and subtropical global ocean interactome, which is essential for addressing the challenges posed by global change.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Archaea/genética , Consórcios Microbianos , Oceanos e Mares , Água do Mar/microbiologia
5.
Sci Adv ; 9(45): eadg9763, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37939185

RESUMO

Tiny ocean plankton (picoplankton) are fundamental for the functioning of the biosphere, but the ecological mechanisms shaping their biogeography were partially understood. Comprehending whether these microorganisms are structured by niche versus neutral processes is relevant in the context of global change. We investigate the ecological processes (selection, dispersal, and drift) structuring global-ocean picoplanktonic communities inhabiting the epipelagic (0 to 200 meters), mesopelagic (200 to 1000 meters), and bathypelagic (1000 to 4000 meters) zones. We found that selection decreased, while dispersal limitation increased with depth, possibly due to differences in habitat heterogeneity and dispersal barriers such as water masses and bottom topography. Picoplankton ß-diversity positively correlated with environmental heterogeneity and water mass variability, but this relationship tended to be weaker for eukaryotes than for prokaryotes. Community patterns were more pronounced in the Mediterranean Sea, probably because of its cross-basin environmental heterogeneity and deep-water isolation. We conclude that different combinations of ecological mechanisms shape the biogeography of the ocean microbiome across depths.


Assuntos
Microbiota , Plâncton , Eucariotos , Água , Oceanos e Mares
6.
Sci Total Environ ; 903: 166104, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37558065

RESUMO

Estuaries are among the most productive ecosystems in the world and are highly dynamic due to the interaction of freshwater and seawater, which results in strong spatial gradients in physico-chemical conditions. Bacterioplankton play a central role in these systems, driving the fluxes of carbon and energy, and being central for contaminant removal in human-impacted areas. Most studies on bacterioplankton dynamics have been carried out in temperate estuaries, and they show that salinity is a major factor driving bacterioplankton distribution. Tropical estuaries, although largely understudied, experience drastic variations in river discharge between the dry and the rainy seasons, influencing the spatial distribution of the salinity gradient and thus likely impacting bacterioplankton communities. Using Illumina sequencing of the 16S rRNA gene, here we studied bacterial communities from the Nicoya's Gulf (Costa Rica), a large tropical estuary characterized by high riverine discharge during the rainy season, to explore seasonal changes in the spatial distribution and connectivity of these communities along the Gulf. Our results show pronounced differences in bacterial diversity and community structure between seasons and zones within the estuary (the shallow upper Gulf, the middle zone and the lower zone, located in the marine end of the estuary). Bacterial communities from the different regions were more similar during the rainy season, suggesting a larger degree of microbial connectivity likely driven by the fast water circulation fueled by the riverine discharge. In the dry season, Enterobacteriales and Cyanobacteria dominated bacterial communities, whereas in the rainy season Alphaproteobacteria was the dominant group. These contrasting seasonal trends were consistent with the seasonal variations observed in bacterial assemblages during a year at a single station in the upper region of the Gulf. We conclude that the Gulf is highly dynamic in both the spatial and temporal scale and that bacterioplankton communities are strongly influenced by the riverine and tidal inputs during both seasons. This study sheds light on the sources of variability in the structure of bacterial communities in tropical estuarine systems, an understudied type of aquatic ecosystem, and sets the basis to design further comprehensive studies on their microbial diversity.

7.
Microbiome ; 11(1): 118, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37237317

RESUMO

BACKGROUND: Viruses play important roles in the ocean's biogeochemical cycles. Yet, deep ocean viruses are one of the most under-explored fractions of the global biosphere. Little is known about the environmental factors that control the composition and functioning of their communities or how they interact with their free-living or particle-attached microbial hosts. RESULTS: We analysed 58 viral communities associated with size-fractionated free-living (0.2-0.8 µm) and particle-attached (0.8-20 µm) cellular metagenomes from bathypelagic (2150-4018 m deep) microbiomes obtained during the Malaspina expedition. These metagenomes yielded 6631 viral sequences, 91% of which were novel, and 67 represented high-quality genomes. Taxonomic classification assigned 53% of the viral sequences to families of tailed viruses from the order Caudovirales. Computational host prediction associated 886 viral sequences to dominant members of the deep ocean microbiome, such as Alphaproteobacteria (284), Gammaproteobacteria (241), SAR324 (23), Marinisomatota (39), and Chloroflexota (61). Free-living and particle-attached viral communities had markedly distinct taxonomic composition, host prevalence, and auxiliary metabolic gene content, which led to the discovery of novel viral-encoded metabolic genes involved in the folate and nucleotide metabolisms. Water mass age emerged as an important factor driving viral community composition. We postulated this was due to changes in quality and concentration of dissolved organic matter acting on the host communities, leading to an increase of viral auxiliary metabolic genes associated with energy metabolism among older water masses. CONCLUSIONS: These results shed light on the mechanisms by which environmental gradients of deep ocean ecosystems structure the composition and functioning of free-living and particle-attached viral communities. Video Abstract.


Assuntos
Microbiota , Vírus , Água do Mar/microbiologia , Água , Genes Virais , Vírus/genética , Microbiota/genética , Oceanos e Mares
8.
Environ Microbiol ; 25(8): 1465-1483, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36907986

RESUMO

Microbes drive the biogeochemical cycles of marine ecosystems through their vast metabolic diversity. While we have a fairly good understanding of the spatial distribution of these metabolic processes in various ecosystems, less is known about their seasonal dynamics. We investigated the annual patterns of 21 biogeochemical relevant functions in an oligotrophic coastal ocean site by analysing the presence of key genes, analysing high-rank gene taxonomy and the dynamics of nucleotide variants. Most genes presented seasonality: photoheterotrophic processes were enriched during spring, phosphorous-related genes were dominant during summer, coinciding with potential phosphate limitation, and assimilatory nitrate reductases appeared mostly during summer and autumn, correlating negatively with nitrate availability. Additionally, we identified the main taxa driving each function at each season and described the role of underrecognized taxa such as Litoricolaceae in carbon fixation (rbcL), urea degradation (ureC), and CO oxidation (coxL). Finally, the seasonality of single variants of some families presented a decoupling between the taxonomic abundance patterns and the functional gene patterns, implying functional specialization of the different genera. Our study unveils the seasonality of key biogeochemical functions and the main taxonomic groups that harbour these relevant functions in a coastal ocean ecosystem.


Assuntos
Ecossistema , Microbiota , Humanos , Microbiota/genética , Genes Microbianos , Oceanos e Mares
9.
Sci Total Environ ; 834: 155264, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35439504

RESUMO

Plastic in the ocean releases organic compounds that are able to enter the marine dissolved organic carbon pool and be utilized by heterotrophic bacteria. However, no information is known about which groups of bacteria are able to grow and degrade plastic leachates. Here we characterized a marine bacterial community from the NW Mediterranean Sea growing on plastic leachates and quantified its total activity. We used two petro-based plastics, low density polyethylene (LDPE) and polystyrene, and one biodegradable plastic, polylactic acid (PLA), to generate leachates under irradiated (UV-Vis) and non-irradiated conditions. Then we incubated them with a natural bacterial inoculum and determined the single-cell activity and associated taxonomy of the bacterial groups, using a combination of Catalyzed Reporter Deposition-Fluorescence In Situ Hybridization (CARDFISH) and BioOrthogonal Non-Canonical Amino acid Tagging (BONCAT). The community growing in the leachates was mainly composed of Alteromonas (Gammaproteobacteria), followed by Roseobacter (Alphaproteobacteria) and unclassified Gammaproteobacteria. Overall, marine bacteria in the irradiated treatments showed higher total activity compared to the non-irradiated ones, with the community growing on LDPE's leachates presenting the highest values. The biodegradable PLA leachates presented lower activity than those from petro-based plastics but similar bacterial composition, suggesting that it is possible that PLA could last in the ocean as much as petro-based plastics do. The results from this study show the impact of marine plastic debris in the marine microbial community and the marine carbon cycle.


Assuntos
Plásticos Biodegradáveis , Plásticos , Bactérias/metabolismo , Hibridização in Situ Fluorescente , Plásticos/metabolismo , Poliésteres/metabolismo , Polietileno/metabolismo , Água do Mar/microbiologia
10.
Sci Total Environ ; 812: 151443, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742983

RESUMO

COVID-19 has led to global population lockdowns that have had indirect effects on terrestrial and marine fauna, yet little is known on their effects on marine planktonic communities. We analysed the effect of the spring 2020 lockdown in a marine coastal area in Blanes Bay, NW Mediterranean. We compared a set of 23 oceanographic, microbial and biogeochemical variables sampled right after the strict lockdown in Spain, with data from the previous 15 years after correcting for long-term trends. Our analysis shows a series of changes in the microbial communities which may have been induced by the combination of the decreased nitrogen atmospheric load, the lower wastewater flux and the reduced fishing activity in the area, among other factors. In particular, we detected a slight decrease beyond the long-term trend in chlorophyll a, in the abundance of several microbial groups (phototrophic nanoflagellates and total prokaryotes) and in prokaryotic activity (heterotrophic prokaryotic production and ß-glucosidase activity) which, as a whole, resulted in a moderate increase of oligotrophy in Blanes Bay after the lockdown.


Assuntos
COVID-19 , Água do Mar , Clorofila A , Controle de Doenças Transmissíveis , Ecossistema , Humanos , SARS-CoV-2
11.
PLoS One ; 16(12): e0260163, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34890389

RESUMO

Conferences are ideal platforms for studying gender gaps in science because they are important cultural events that reflect barriers to women in academia. Here, we explored women's participation in ecology conferences by analyzing female representation, behavior, and personal experience at the 1st Meeting of the Iberian Society of Ecology (SIBECOL). The conference had 722 attendees, 576 contributions, and 27 scientific sessions. The gender of attendees and presenters was balanced (48/52% women/men), yet only 29% of the contributions had a woman as last author. Moreover, men presented most of the keynote talks (67%) and convened most of the sessions. Our results also showed that only 32% of the questions were asked by women, yet the number of questions raised by women increased when the speaker or the convener was a woman. Finally, the post-conference survey revealed that attendees had a good experience and did not perceive the event as a threatening context for women. Yet, differences in the responses between genders suggest that women tended to have a worse experience than their male counterparts. Although our results showed clear gender biases, most of the participants of the conference failed to detect it. Overall, we highlight the challenge of increasing women's scientific leadership, visibility and interaction in scientific conferences and we suggest several recommendations for creating inclusive meetings, thereby promoting equal opportunities for all participants.


Assuntos
Ecologia/métodos , Comportamento , Feminino , Humanos , Liderança , Masculino , Percepção , Sexismo
12.
Nat Microbiol ; 6(12): 1561-1574, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34782724

RESUMO

The role of the Arctic Ocean ecosystem in climate regulation may depend on the responses of marine microorganisms to environmental change. We applied genome-resolved metagenomics to 41 Arctic seawater samples, collected at various depths in different seasons during the Tara Oceans Polar Circle expedition, to evaluate the ecology, metabolic potential and activity of resident bacteria and archaea. We assembled 530 metagenome-assembled genomes (MAGs) to form the Arctic MAGs catalogue comprising 526 species. A total of 441 MAGs belonged to species that have not previously been reported and 299 genomes showed an exclusively polar distribution. Most Arctic MAGs have large genomes and the potential for fast generation times, both of which may enable adaptation to a copiotrophic lifestyle in nutrient-rich waters. We identified 38 habitat generalists and 111 specialists in the Arctic Ocean. We also found a general prevalence of 14 mixotrophs, while chemolithoautotrophs were mostly present in the mesopelagic layer during spring and autumn. We revealed 62 MAGs classified as key Arctic species, found only in the Arctic Ocean, showing the highest gene expression values and predicted to have habitat-specific traits. The Artic MAGs catalogue will inform our understanding of polar microorganisms that drive global biogeochemical cycles.


Assuntos
Archaea/genética , Bactérias/genética , Água do Mar/microbiologia , Archaea/classificação , Archaea/isolamento & purificação , Regiões Árticas , Bactérias/classificação , Bactérias/isolamento & purificação , Ecossistema , Genoma Arqueal , Genoma Bacteriano , Metagenoma , Filogenia
13.
Commun Biol ; 4(1): 604, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021239

RESUMO

The deep sea, the largest ocean's compartment, drives planetary-scale biogeochemical cycling. Yet, the functional exploration of its microbial communities lags far behind other environments. Here we analyze 58 metagenomes from tropical and subtropical deep oceans to generate the Malaspina Gene Database. Free-living or particle-attached lifestyles drive functional differences in bathypelagic prokaryotic communities, regardless of their biogeography. Ammonia and CO oxidation pathways are enriched in the free-living microbial communities and dissimilatory nitrate reduction to ammonium and H2 oxidation pathways in the particle-attached, while the Calvin Benson-Bassham cycle is the most prevalent inorganic carbon fixation pathway in both size fractions. Reconstruction of the Malaspina Deep Metagenome-Assembled Genomes reveals unique non-cyanobacterial diazotrophic bacteria and chemolithoautotrophic prokaryotes. The widespread potential to grow both autotrophically and heterotrophically suggests that mixotrophy is an ecologically relevant trait in the deep ocean. These results expand our understanding of the functional microbial structure and metabolic capabilities of the largest Earth aquatic ecosystem.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Ciclo do Carbono , DNA Bacteriano/genética , Metagenoma , Fotossíntese , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , DNA Bacteriano/análise
14.
Environ Microbiol ; 23(6): 3009-3019, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33817943

RESUMO

Ostreococcus is a cosmopolitan marine genus of phytoplankton found in mesotrophic and oligotrophic waters, and the smallest free-living eukaryotes known to date, with a cell diameter close to 1 µm. Ostreococcus has been extensively studied as a model system to investigate viral-host dynamics in culture, yet the impact of viruses in naturally occurring populations is largely unknown. Here, we used Virus Fluorescence in situ Hybridization (VirusFISH) to visualize and quantify viral-host dynamics in natural populations of Ostreococcus during a seasonal cycle in the central Cantabrian Sea (Southern Bay of Biscay). Ostreococcus were predominantly found during summer and autumn at surface and 50 m depth, in coastal, mid-shelf and shelf waters, representing up to 21% of the picoeukaryotic communities. Viral infection was only detected in surface waters, and its impact was variable but highest from May to July and November to December, when up to half of the population was infected. Metatranscriptomic data available from the mid-shelf station unveiled that the Ostreococcus population was dominated by the species O. lucimarinus. This work represents a proof of concept that the VirusFISH technique can be used to quantify the impact of viruses on targeted populations of key microbes from complex natural communities.


Assuntos
Fitoplâncton/virologia , Vírus , Hibridização in Situ Fluorescente , Estações do Ano , Água do Mar , Vírus/genética
15.
Environ Sci Technol ; 55(14): 9609-9621, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33606522

RESUMO

Coastal seawaters receive thousands of organic pollutants. However, we have little understanding of the response of microbiomes to this pool of anthropogenic dissolved organic carbon (ADOC). In this study, coastal microbial communities were challenged with ADOC at environmentally relevant concentrations. Experiments were performed at two Mediterranean sites with different impact by pollutants and nutrients: off the Barcelona harbor ("BCN"), and at the Blanes Bay ("BL"). ADOC additions stimulated prokaryotic leucine incorporation rates at both sites, indicating the use of ADOC as growth substrate. The percentage of "membrane-compromised" cells increased with increasing ADOC, indicating concurrent toxic effects of ADOC. Metagenomic analysis of the BCN community challenged with ADOC showed a significant growth of Methylophaga and other gammaproteobacterial taxa belonging to the rare biosphere. Gene expression profiles showed a taxon-dependent response, with significantly enrichments of transcripts from SAR11 and Glaciecola spp. in BCN and BL, respectively. Further, the relative abundance of transposon-related genes (in BCN) and transcripts (in BL) correlated with the number of differentially abundant genes (in BCN) and transcripts (in BLA), suggesting that microbial responses to pollution may be related to pre-exposure to pollutants, with transposons playing a role in adaptation to ADOC. Our results point to a taxon-specific response to low concentrations of ADOC that impact the functionality, structure and plasticity of the communities in coastal seawaters. This work contributes to address the influence of pollutants on microbiomes and their perturbation to ecosystem services and ocean health.


Assuntos
Poluentes Ambientais , Microbiota , Carbono , Metagenômica , Água do Mar
16.
Environ Microbiol ; 23(1): 190-206, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33089653

RESUMO

Different factors affect the way dissolved organic matter (DOM) is processed in the ocean water column, including environmental conditions and the functional capabilities of the communities. Recent studies have shown that bathypelagic prokaryotes are metabolically flexible, but whether this versatility translates into a higher ability to process DOM has been barely explored. Here we performed a multifactorial transplant experiment to compare the growth, activity and changes in DOM quality in surface and bathypelagic waters inoculated with either surface or bathypelagic prokaryotic communities. The effect of nutrient additions to surface waters was also explored. Despite no differences in the cell abundance of surface and deep ocean prokaryotes were observed in any of the treatments, in surface waters with nutrients the heterotrophic production of surface prokaryotes rapidly decreased. Conversely, bathypelagic communities displayed a sustained production throughout the experiment. Incubations with surface prokaryotes always led to a significant accumulation of recalcitrant compounds, which did not occur with bathypelagic prokaryotes, suggesting they have a higher ability to process DOM. These contrasting abilities could be explained by the recruitment of a comparatively larger number of opportunistic taxa within the bathypelagic assemblages, which likely resulted in a broader community capability of substrate utilization.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Carbono/metabolismo , Metabolismo Energético/fisiologia , Compostos Orgânicos/metabolismo , Archaea/classificação , Bactérias/classificação , Processos Heterotróficos/fisiologia , Microbiota/fisiologia , Água do Mar/química
17.
Sci Rep ; 10(1): 19773, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188261

RESUMO

Estimation of prokaryotic growth rates is critical to understand the ecological role and contribution of different microbes to marine biogeochemical cycles. However, there is a general lack of knowledge on what factors control the growth rates of different prokaryotic groups and how these vary between sites and along seasons at a given site. We carried out several manipulation experiments during the four astronomical seasons in the coastal NW Mediterranean in order to evaluate the impact of grazing, viral mortality, resource competition and light on the growth and loss rates of prokaryotes. Gross and net growth rates of different bacterioplankton groups targeted by group-specific CARD-FISH probes and infrared microscopy (for aerobic anoxygenic phototrophs, AAP), were calculated from changes in cell abundances. Maximal group-specific growth rates were achieved when both predation pressure and nutrient limitation were experimentally minimized, while only a minimal effect of viral pressure on growth rates was observed; nevertheless, the response to predation removal was more remarkable in winter, when the bacterial community was not subjected to nutrient limitation. Although all groups showed increases in their growth rates when resource competition as well as grazers and viral pressure were reduced, Alteromonadaceae consistently presented the highest rates in all seasons. The response to light availability was generally weaker than that to the other factors, but it was variable between seasons. In summer and spring, the growth rates of AAP were stimulated by light whereas the growth of the SAR11 clade (likely containing proteorhodopsin) was enhanced by light in all seasons. Overall, our results set thresholds on bacterioplankton group-specific growth and mortality rates and contribute to estimate the seasonally changing contribution of various bacterioplankton groups to the function of microbial communities. Our results also indicate that the least abundant groups display the highest growth rates, contributing to the recycling of organic matter to a much greater extent than what their abundances alone would predict.


Assuntos
Alteromonadaceae/efeitos da radiação , Raios Infravermelhos , Luz , Microbiota , Espectrofotometria Infravermelho
18.
Front Microbiol ; 11: 1559, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765451

RESUMO

One of the major challenges in viral ecology is to assess the impact of viruses in controlling the abundance of specific hosts in the environment. To this end, techniques that enable the detection and quantification of virus-host interactions at the single-cell level are essential. With this goal in mind, we implemented virus fluorescence in situ hybridization (VirusFISH) using as a model the marine picoeukaryote Ostreococcus tauri and its virus Ostreococcus tauri virus 5 (OtV5). VirusFISH allowed the visualization and quantification of the proportion of infected cells during an infection cycle in experimental conditions. We were also able to quantify the abundance of free viruses released during cell lysis, discriminating OtV5 from other mid-level fluorescence phages in our non-axenic infected culture that were not easily distinguishable with flow cytometry. Our results showed that although the major lysis of the culture occurred between 24 and 48 h after OtV5 inoculation, some new viruses were already produced between 8 and 24 h. With this work, we demonstrate that VirusFISH is a promising technique to study specific virus-host interactions in non-axenic cultures and establish a framework for its application in complex natural communities.

19.
Life (Basel) ; 10(7)2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-32635627

RESUMO

We explored how changes of viral abundance and community composition among four contrasting regions in the Southern Ocean relied on physicochemical and microbiological traits. During January-February 2015, we visited areas north and south of the South Orkney Islands (NSO and SSO) characterized by low temperature and salinity and high inorganic nutrient concentration, north of South Georgia Island (NSG) and west of Anvers Island (WA), which have relatively higher temperatures and lower inorganic nutrient concentrations. Surface viral abundance (VA) was highest in NSG (21.50 ± 10.70 × 106 viruses mL-1) and lowest in SSO (2.96 ± 1.48 × 106 viruses mL-1). VA was positively correlated with temperature, prokaryote abundance and prokaryotic heterotrophic production, chlorophyll a, diatoms, haptophytes, fluorescent organic matter, and isoprene concentration, and was negatively correlated with inorganic nutrients (NO3-, SiO42-, PO43-), and dimethyl sulfide (DMS) concentrations. Viral communities determined by randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) were grouped according to the sampling location, being more similar within them than among regions. The first two axes of a canonical correspondence analysis, including physicochemical (temperature, salinity, inorganic nutrients-NO3-, SiO42-, and dimethyl sulfoniopropionate -DMSP- and isoprene concentrations) and microbiological (chlorophyll a, haptophytes and diatom, and prokaryote abundance and prokaryotic heterotrophic production) factors accounted for 62.9% of the variance. The first axis, temperature-related, accounted for 33.8%; the second one, salinity-related, accounted for 29.1%. Thus, different environmental situations likely select different hosts for viruses, leading to distinct viral communities.

20.
Microbiome ; 8(1): 55, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312331

RESUMO

BACKGROUND: The ocean microbiota modulates global biogeochemical cycles and changes in its configuration may have large-scale consequences. Yet, the underlying ecological mechanisms structuring it are unclear. Here, we investigate how fundamental ecological mechanisms (selection, dispersal and ecological drift) shape the smallest members of the tropical and subtropical surface-ocean microbiota: prokaryotes and minute eukaryotes (picoeukaryotes). Furthermore, we investigate the agents exerting abiotic selection on this assemblage as well as the spatial patterns emerging from the action of ecological mechanisms. To explore this, we analysed the composition of surface-ocean prokaryotic and picoeukaryotic communities using DNA-sequence data (16S- and 18S-rRNA genes) collected during the circumglobal expeditions Malaspina-2010 and TARA-Oceans. RESULTS: We found that the two main components of the tropical and subtropical surface-ocean microbiota, prokaryotes and picoeukaryotes, appear to be structured by different ecological mechanisms. Picoeukaryotic communities were predominantly structured by dispersal-limitation, while prokaryotic counterparts appeared to be shaped by the combined action of dispersal-limitation, selection and drift. Temperature-driven selection appeared as a major factor, out of a few selected factors, influencing species co-occurrence networks in prokaryotes but not in picoeukaryotes, indicating that association patterns may contribute to understand ocean microbiota structure and response to selection. Other measured abiotic variables seemed to have limited selective effects on community structure in the tropical and subtropical ocean. Picoeukaryotes displayed a higher spatial differentiation between communities and a higher distance decay when compared to prokaryotes, consistent with a scenario of higher dispersal limitation in the former after considering environmental heterogeneity. Lastly, random dynamics or drift seemed to have a more important role in structuring prokaryotic communities than picoeukaryotic counterparts. CONCLUSIONS: The differential action of ecological mechanisms seems to cause contrasting biogeography, in the tropical and subtropical ocean, among the smallest surface plankton, prokaryotes and picoeukaryotes. This suggests that the idiosyncrasy of the main constituents of the ocean microbiota should be considered in order to understand its current and future configuration, which is especially relevant in a context of global change, where the reaction of surface ocean plankton to temperature increase is still unclear. Video Abstract.


Assuntos
Microbiota , Oceanos e Mares , Plâncton/classificação , Microbiologia da Água , Archaea/classificação , Bactérias/classificação , Eucariotos/classificação , Filogeografia , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Análise Espacial , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...