Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266711

RESUMO

The psychosis spectrum encompasses a heterogeneous range of clinical conditions associated with abnormal brain development. Detecting patterns of atypical neuroanatomical maturation across psychiatric disorders requires an interpretable metric standardized by age-, sex- and site-effect. The molecular and micro-architectural attributes that account for these deviations in brain structure from typical neurodevelopment are still unknown. Here, we aggregate structural magnetic resonance imaging data from 38,696 healthy controls (HC) and 1256 psychosis-related conditions, including first-degree relatives of schizophrenia (SCZ) and schizoaffective disorder (SAD) patients (n = 160), individuals who had psychotic experiences (n = 157), patients who experienced a first episode of psychosis (FEP, n = 352), and individuals with chronic SCZ or SAD (n = 587). Using a normative modeling approach, we generated centile scores for cortical gray matter (GM) phenotypes, identifying deviations in regional volumes below the expected trajectory for all conditions, with a greater impact on the clinically diagnosed ones, FEP and chronic. Additionally, we mapped 46 neurobiological features from healthy individuals (including neurotransmitters, cell types, layer thickness, microstructure, cortical expansion, and metabolism) to these abnormal centiles using a multivariate approach. Results revealed that neurobiological features were highly co-localized with centile deviations, where metabolism (e.g., cerebral metabolic rate of oxygen (CMRGlu) and cerebral blood flow (CBF)) and neurotransmitter concentrations (e.g., serotonin (5-HT) and acetylcholine (α4ß2) receptors) showed the most consistent spatial overlap with abnormal GM trajectories. Taken together these findings shed light on the vulnerability factors that may underlie atypical brain maturation during different stages of psychosis.

2.
Nat Neurosci ; 26(8): 1461-1471, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37460809

RESUMO

Structural similarity is a growing focus for magnetic resonance imaging (MRI) of connectomes. Here we propose Morphometric INverse Divergence (MIND), a new method to estimate within-subject similarity between cortical areas based on the divergence between their multivariate distributions of multiple MRI features. Compared to the prior approach of morphometric similarity networks (MSNs) on n > 11,000 scans spanning three human datasets and one macaque dataset, MIND networks were more reliable, more consistent with cortical cytoarchitectonics and symmetry and more correlated with tract-tracing measures of axonal connectivity. MIND networks derived from human T1-weighted MRI were more sensitive to age-related changes than MSNs or networks derived by tractography of diffusion-weighted MRI. Gene co-expression between cortical areas was more strongly coupled to MIND networks than to MSNs or tractography. MIND network phenotypes were also more heritable, especially edges between structurally differentiated areas. MIND network analysis provides a biologically validated lens for cortical connectomics using readily available MRI data.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Animais , Humanos , Encéfalo , Imagem de Difusão por Ressonância Magnética , Conectoma/métodos , Macaca
3.
Bioinformatics ; 36(8): 2385-2392, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31860070

RESUMO

MOTIVATION: Reconstructing high-quality haplotype-resolved assemblies for related individuals has important applications in Mendelian diseases and population genomics. Through major genomics sequencing efforts such as the Personal Genome Project, the Vertebrate Genome Project (VGP) and the Genome in a Bottle project (GIAB), a variety of sequencing datasets from trios of diploid genomes are becoming available. Current trio assembly approaches are not designed to incorporate long- and short-read data from mother-father-child trios, and therefore require relatively high coverages of costly long-read data to produce high-quality assemblies. Thus, building a trio-aware assembler capable of producing accurate and chromosomal-scale diploid genomes of all individuals in a pedigree, while being cost-effective in terms of sequencing costs, is a pressing need of the genomics community. RESULTS: We present a novel pedigree sequence graph based approach to diploid assembly using accurate Illumina data and long-read Pacific Biosciences (PacBio) data from all related individuals, thereby generalizing our previous work on single individuals. We demonstrate the effectiveness of our pedigree approach on a simulated trio of pseudo-diploid yeast genomes with different heterozygosity rates, and real data from human chromosome. We show that we require as little as 30× coverage Illumina data and 15× PacBio data from each individual in a trio to generate chromosomal-scale phased assemblies. Additionally, we show that we can detect and phase variants from generated phased assemblies. AVAILABILITY AND IMPLEMENTATION: https://github.com/shilpagarg/WHdenovo.


Assuntos
Genoma , Genômica , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linhagem , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA