Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biorheology ; 45(3-4): 415-32, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18836242

RESUMO

In inflammatory conditions, chondrocytes produce large amounts of matrix metalloproteases (MMP) and nitric oxide (NO) thought to contribute to joint degradation. We tested the ability of all-trans retinoic acid (ATRA, a retinoic acid receptor (RAR) agonist) to modulate these inflammatory genes in chondrocytes from humans or rats, chosen as representative of animal models of arthritis. All RAR subtypes and RXR-alpha or -beta were expressed at the mRNA level in both species, although IL-1beta (10 ng/ml) inhibited RAR subtypes more markedly in rat than in human cells. ATRA (300 or 1000 nM) inhibited IL-1-induced expression of iNOS and nitrites level in both species, although the NO pathway was induced maximally in rat cells. ATRA displayed controversial effects on MMPs between rat and human chondrocytes, especially for MMP-9 expression. The effects of ATRA were irrelevant to the nuclear translocation of AP-1. The present data underlines that retinoids have a species-dependent impact on IL-1-induced responses in chondrocytes, suggesting that extrapolation of their pharmacological properties from animal cells has a poor relevance to clinical situation.


Assuntos
Condrócitos/metabolismo , Interleucina-1beta/metabolismo , Metaloproteinases da Matriz/metabolismo , Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides/metabolismo , Fator de Transcrição AP-1/efeitos dos fármacos , Tretinoína/metabolismo , Animais , Artrite Reumatoide , Técnicas de Cultura de Células , Condrócitos/efeitos dos fármacos , Expressão Gênica , Humanos , Interleucina-1beta/farmacologia , Metaloproteinases da Matriz/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Receptores do Ácido Retinoico/efeitos dos fármacos , Receptores X de Retinoides/efeitos dos fármacos , Especificidade da Espécie , Fator de Transcrição AP-1/metabolismo , Tretinoína/farmacologia
2.
Am J Transplant ; 8(5): 942-53, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18341686

RESUMO

We previously showed that transient depletion of dividing T cells at the time of an allogeneic transplantation induces long-term tolerance to the allograft. Here we investigated the role of homeostatic perturbation and regulatory T cells (Treg) in such tolerance. Transient depletion of dividing T cells was induced at the time of an allogeneic pancreatic islets graft, by administration of ganciclovir for 14 days, into diabetic transgenic mice expressing a thymidine kinase (TK) conditional suicide gene in T cells. Allograft tolerance was obtained in 63% of treated mice. It was not due to global immunosuppression, permanent deletion or anergy of donor-alloantigens specific T cells but to a dominant tolerance process since lymphocytes from tolerant mice could transfer tolerance to naïve allografted recipients. The transient depletion of dividing T cells induces a 2- to 3-fold increase in the proportion of CD4(+)CD25(+)Foxp3(+) Treg, within 3 weeks that persisted only in allograft-bearing mice but not in nongrafted mice. Tolerance with similar increased proportion of Treg cells was also obtained after a cytostatic hydroxyurea treatment in normal mice. Thus, the transient depletion of dividing T cells represents a novel means of immuno-intervention based on disturbance of T-cell homeostasis and subsequent increase in Treg proportion.


Assuntos
Tolerância Imunológica , Transplante das Ilhotas Pancreáticas/imunologia , Depleção Linfocítica , Linfócitos T Reguladores/imunologia , Linfócitos T/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Divisão Celular , Hidroxiureia/farmacologia , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Modelos Animais , Linfócitos T/citologia , Transplante Homólogo/imunologia
3.
Osteoarthritis Cartilage ; 15(5): 493-505, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17140817

RESUMO

OBJECTIVE: To investigate the potency of selective agonists of peroxisome proliferators-activated receptors' (PPAR) isotypes (alpha, beta/delta or gamma) to modulate the stimulating effect of transforming growth factor-beta1 (TGF-beta1) on proteoglycans' (PGs) synthesis in chondrocytes. METHOD: Rat chondrocytes embedded in alginate beads and cultured under low serum conditions were exposed to TGF-beta1 (10 ng/ml), alone or in combination with the following agonists: Wy14643 for PPARalpha, GW501516 for PPARbeta/delta, rosiglitazone (ROSI) for PPARgamma, in the presence or absence of PPAR antagonists (GW6471 for PPARalpha, GW9662 for PPARgamma). PGs' synthesis was evaluated by radiolabelled sulphate incorporation and glycosaminoglycans' (GAGs) content by Alcian blue staining of beads and colorimetric 1.9 dimethyl-methylene blue assay after beads' solubilization. Phosphorylation of Extracellular Signal-related Kinase1/2 (ERK1/2), Smad2/3 and p38-MAPK was assessed by Western Blot and production of prostaglandin E2 (PGE2) by Enzyme immuno-assay (EIA). Levels of mRNA for PPAR target genes [acyl-CoA oxidase (ACO) for PPARalpha; mitochondrial carnitin palmitoyl transferase-1 (CPT-1) for PPARbeta/delta and adiponectin for PPARgamma], aggrecan, TGF-beta1 and genes controlling GAGs' side chains' synthesis were quantified by real time polymerase chain reaction and normalized over RP29 housekeeping gene. RESULTS: ACO was selectively up-regulated by 100 microM of Wy14643, CPT-1 by 100 nM of GW501516 and adiponectin by 10 microM of ROSI without cell toxicity. TGF-beta1 increased PGs' synthesis by four-fold, GAGs' content and deposition by 3.5-fold and six-fold, respectively, while inducing aggrecan expression around 10-fold without modifying mRNA levels of GAGs' controlling enzymes. PPAR agonists inhibited the stimulating effect of TGF-beta1 by 24-44% on PGs' synthesis and over 75% on aggrecan, GAGs' content and deposition with the following rank order of potency: ROSI>GW501516> or =Wy14643. TGF-beta1-induced phosphorylation of Smad2/3 and ERK1/2 was reduced by ROSI over GW501516 but not by Wy14643 whereas stimulated PGE2 production was inhibited by Wy14643 over GW501516 but not by ROSI. The effect of PPAR agonists on PPAR target genes and TGF-beta1-induced aggrecan expression was reversed selectively by PPAR antagonists. CONCLUSION: In chondrocytes' beads, PPAR agonists reduced the stimulating effect of TGF-beta1 on PGs by inhibiting TGF-beta1-induced aggrecan expression in an isotype-selective manner. Thus, PPAR agonists could be deleterious in situation of cartilage repair although being protective in situation of cartilage degradation.


Assuntos
Receptores Ativados por Proliferador de Peroxissomo/farmacologia , Proteoglicanas/biossíntese , Fator de Crescimento Transformador beta/agonistas , Animais , Condrócitos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicosaminoglicanos/biossíntese , Ratos , Proteínas Smad/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA