Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38257240

RESUMO

The present study evaluated the antioxidant and antidiabetic properties of Medicago sativa and Solidago virgaurea extracts enriched in polyphenolic compounds. The extracts were obtained by accelerated solvent extraction (ASE) and laser irradiation. Then, microfiltration was used for purification, followed by nanofiltration used to concentrate the two extracts. The obtained extracts were analyzed to determine their antioxidant activity using DPPH radical scavenging and reducing power methods. The antidiabetic properties have been investigated in vitro on a murine insulinoma cell line (ß-TC-6) by the inhibition of α-amylase and α-glucosidase. M. sativa obtained by laser irradiation and concentrated by nanofiltration showed the highest DPPH• scavenging (EC50 = 105.2 ± 1.1 µg/mL) and reducing power activities (EC50 = 40.98 ± 0.2 µg/mL). M. sativa extracts had higher inhibition on α-amylase (IC50 = 23.9 ± 1.2 µg/mL for concentrated extract obtained after ASE, and 26.8 ± 1.1), while S. virgaurea had the highest α-glucosidase inhibition (9.3 ± 0.9 µg/mL for concentrated extract obtained after ASE, and 8.6 ± 0.7 µg/mL for concentrated extract obtained after laser extraction). The obtained results after evaluating in vitro the antidiabetic activity showed that the treatment with M. sativa and S. virgaurea polyphenolic-rich extracts stimulated the insulin secretion of ß-TC-6 cells, both under normal conditions and under hyperglycemic conditions as well. This paper argues that M. sativa and S. virgaurea polyphenolic-rich extracts could be excellent natural sources with promising antidiabetic potential.


Assuntos
Neoplasias Pancreáticas , Solidago , Animais , Camundongos , Antioxidantes/farmacologia , Medicago sativa , alfa-Glucosidases , Hipoglicemiantes/farmacologia , alfa-Amilases , Extratos Vegetais/farmacologia
2.
Drug Deliv Transl Res ; 14(4): 1028-1047, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37853275

RESUMO

A major clinical challenge today is the large number of bone defects caused by diseases or trauma. The development of three-dimensional (3D) scaffolds with adequate properties is crucial for successful bone repair. In this study, we prepared biomimetic mesoporous bioactive glass (MBG)-based scaffolds with and without ceria addition (up to 3 mol %) to explore the biological structure and chemical composition of the marine sponge Spongia Agaricina (SA) as a sacrificial template. Micro-CT examination revealed that all scaffolds exhibited a highly porous structure with pore diameters primarily ranging from 143.5 µm to 213.5 µm, facilitating bone ingrowth. Additionally, smaller pores (< 75 µm), which are known to enhance osteogenesis, were observed. The undoped scaffold displayed the highest open porosity value of 90.83%. Cytotoxicity assessments demonstrated that all scaffolds were noncytotoxic and nongenotoxic toward osteoblast cells. Moreover, scaffolds with higher CeO2 content promoted osteogenic differentiation of dental pulp stem cells, stimulating calcium and osteocalcin secretion. The scaffolds also exhibited antimicrobial and antibiofilm effects against Staphylococcus aureus (S. aureus) as well as drug delivery ability. Our research findings indicated that the combination of MBG, natural biological structure, and the addition of Ce exhibited a synergistic effect on the structure and biological properties of scaffolds for applications in bone tissue engineering.


Assuntos
Anti-Infecciosos , Osteogênese , Alicerces Teciduais/química , Staphylococcus aureus , Regeneração Óssea , Engenharia Tecidual/métodos , Porosidade , Vidro/química
3.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069172

RESUMO

This study aimed to investigate, for the first time, the chemical composition and antioxidant activity of fluid extracts obtained from three Romanian cultivars of haskap berries (Lonicera caerulea L.) var. Loni, bitter cherries (Prunus avium var. sylvestris Ser.) var. Silva, and pomace from red grapes (Vitis vinifera L.) var. Mamaia, and their capacity to modulate in vitro steatosis, in view of developing novel anti-obesity products. Total phenolic, flavonoid, anthocyanin, and ascorbic acid content of fluid extracts was spectrophotometrically assessed and their free radical scavenging capacity was evaluated using Trolox Equivalent Antioxidant Capacity (TEAC) and free 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition assays. The Pearson coefficients showed a moderate correlation between the antioxidant activity of fluid extracts and their phenolic content, but a strong correlation between anthocyanin and ascorbic acid content. HPLC analysis identified and quantified the main phenolic compounds of chlorogenic and syringic acid, catechin, and glycosylated kaempferol, apigenin, and quercetin, in variable proportions. An in vitro experimental model of steatosis was developed in HepG2 hepatocytes treated with a mixture of free fatty acids. Cell culture analyses showed that cytocompatible concentrations of fluid extracts could significantly reduce the lipid accumulation and inhibit the reactive oxygen species, malondialdehyde, and nitric oxide secretion in stressed hepatocytes. In conclusion, these results put an emphasis on the chemical compounds' high antioxidant and liver protection capacity of unstudied fluid extracts obtained from Romanian cultivars of bitter cherries var. Silva and pomace of red grapes var. Mamaia, similar to the fluid extract of haskap berries var. Loni, in particular, the positive modulation of fat deposition next to oxidative stress and the lipid peroxidation process triggered by fatty acids in HepG2 hepatocytes. Consequently, this study indicated that these fluid extracts could be further exploited as hepatoprotective agents in liver steatosis, which provides a basis for the further development of novel extract mixtures with synergistic activity as anti-obesity products.


Assuntos
Fígado Gorduroso , Vitis , Antioxidantes/química , Frutas/química , Antocianinas/química , Romênia , Extratos Vegetais/química , Ácido Ascórbico/química , Fenóis/química , Fígado Gorduroso/tratamento farmacológico
4.
Plants (Basel) ; 12(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38005806

RESUMO

Hedera helix L. contains phytochemicals with good biological properties which are beneficial to human health and can be used to protect plants against different diseases. The aim of this research was to find the most suitable extraction method and the most favorable parameters for the extraction of different bioactive compounds from ivy leaves. Different extraction methods, namely microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), and conventional heating extraction (CHE), were used. The most suitable method for the extraction of saponins is MAE with an extraction efficiency of 58%, while for carbohydrates and polyphenols, the best results were achieved via UAE with an extraction efficiency of 61.7% and 63.5%, respectively. The antioxidant activity (AA) of the extracts was also determined. The highest AA was obtained via UAE (368.98 ± 9.01 µmol TR/gDM). Better results were achieved at 50 °C for 10 min of extraction, using 80% ethanol in water as solvent. In order to evaluate their in vitro cytotoxicity, the extracts richest in bioactive compounds were tested on NCTC fibroblasts. Their influence on the DNA content of RAW 264.7 murine macrophages was also tested. Until 200 µg/mL, the extracts obtained via UAE and MAE were cytocompatible with NCTC fibroblasts at 48 h of treatment. Summarizing the above, both MAE and UAE can be employed as green and efficient methods for producing extracts rich in bioactive compounds, exhibiting strong antioxidant properties and good noncytotoxic activity.

5.
Polymers (Basel) ; 14(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36559911

RESUMO

The aim of this study was to obtain biocomposites consisting of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), bacterial cellulose (BC) and α-tocopherol by a melt processing technique for potential use in biomedical applications. The melt processing and roughness of biocomposites were evaluated and compared to sample without BC. The degradation rate of PHBV/BC biocomposites was measured in phosphate buffer saline (PBS) by determining the mass variation and evidencing of thermal and structural changes by differential scanning calorimetry (DSC) and attenuated total reflectance-Fourier transformed infrared spectrometry (ATR-FTIR). The cell viability, cell morphology, cell cycle distribution and total collagen content were investigated on murine NCTC fibroblasts. Overall, the adding of BC to polyester matrix led to an adequate melt processing of biocomposites and increased surface roughness and cytocompatibility, allowing the cells to secrete the extracellular matrix (collagen) and stimulate cell proliferation. Results showed that the PHBV/BC biocomposites were favorable for long-term degradation and could be used for the design of medical devices with controlled degradability.

6.
Food Technol Biotechnol ; 60(3): 281-292, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36320350

RESUMO

Research background: Various protocols for enzymatic hydrolysis of fish by-products are increasingly tested to ensure value-added products with functional and biological properties important for food, cosmetic and medical applications. In addition, they attempt to minimize waste from industrial processing and environmental requirements. This study aims to establish an efficient protocol based on two-step enzymatic hydrolysis of freshwater fish skin and to evaluate the effect of resulting bioactive peptides on free radical scavenging, redox balance and regulation of fibroblast proliferation and migration. Experimental approach: Pepsin-soluble collagen extracted from silver carp (Hypophthalmichthys molitrix) skin was hydrolyzed by proteinase K at specific sites under controlled conditions. The molecular mass of ultrafiltration permeate was determined by gradient electrophoresis and gel filtration chromatography. The biological activity of intermediate and small size bioactive peptides was evaluated in experimental models in vitro mimicking oxidative stress and skin wound conditions. Results and conclusions: Extracted fish collagen was hydrolysed using proteinase K, the most efficient enzyme for the cleavage of the primary structure of the molecule, as previously found in silico. Established optimal conditions increased the enzyme specificity and the process yield. Bioactive peptides exerted significantly higher scavenging activity on free stable radicals and hydroxyl radicals often found in vivo, compared to fish collagen. They stimulated fibroblast metabolism in a dose-dependent manner and up-regulated cell migration in a scratch wound model. Pretreatment of fibroblasts with induced oxidative stress using optimal concentrations of fish peptides prevented the increase of reactive oxygen species production. In conclusion, bioactive peptides from carp skin demonstrated valuable properties of maintaining redox balance and skin wound healing process improvement, which indicated further potential applications in the development of pharmaceutical and nutraceutical formulations. Novelty and scientific contribution: In this study the enzymatic hydrolysis was applied to isolated protein, in contrast to previous studies using waste tissue with variable composition. Recovered bioactive peptides acted not only as antioxidant agents, but also as regulators of oxidative stress and wound healing processes in skin cell models. Their nutritional and cosmetic application is recommended in novel formulations fighting skin ageing phenomena.

7.
Materials (Basel) ; 15(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36234345

RESUMO

Natural compounds are an important source of beneficial components that could be used in cancer therapy along with well-known cytostatic agents to enhance the therapeutic effect while targeting tumoral tissues. Therefore, nanoplatforms containing mesoporous silica and a natural polysaccharide, ulvan, extracted from Ulva Lactuca seaweed, were developed for irinotecan. Either mesoporous silica-ulvan nanoplatforms or irinotecan-loaded materials were structurally and morphologically characterized. In vitro drug release experiments in phosphate buffer solution with a pH of 7.6 emphasized the complete recovery of irinotecan in 8 h. Slower kinetics were obtained for the nanoplatforms with a higher amount of natural polysaccharide. Ulvan extract proved to be biocompatible up to 2 mg/mL on fibroblasts L929 cell line. The irinotecan-loaded nanoplatforms exhibited better anticancer activity than that of the drug alone on human colorectal adenocarcinoma cells (HT-29), reducing their viability to 60% after 24 h. Moreover, the cell cycle analysis proved that the irinotecan loading onto developed nanoplatforms caused an increase in the cell number trapped at G0/G1 phase and influenced the development of the tumoral cells.

8.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36297309

RESUMO

The aim of this study was to establish the best ultrasound assisted extraction (UAE) conditions of saponins from Hedera helix L. leaves and to evaluate the in vitro biocompatibility of the extracts richest in saponins. Different parameters, such as extraction time, temperature, ultrasound power, solvent to plant material ratio, and solvent concentration, were investigated. The most efficient extraction conditions were a temperature of 50 °C, an ultrasound amplitude of 40%, an extraction time of 60 min, a plant material to solvent ratio of 1:20 (w:v), and 80% ethanol as solvent. In vitro cytotoxicity of the extracts richest in saponins and their influence on the DNA content of L929 (NCTC) fibroblasts were tested. Until 200 µg/mL, the studied extracts were cytocompatible with L929 fibroblast cell lines at 48 h of treatment. These in vitro cell culture results provide useful information for further applications of Hedera helix extracts in a pharmaceutical field.

9.
Pharmaceutics ; 14(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35745741

RESUMO

Finding innovative solutions to improve the lives of people affected by trauma, bone disease, or aging continues to be a challenge worldwide. Tissue engineering is the most rapidly growing area in the domain of biomaterials. Cerium-containing MBG-derived biomaterials scaffolds were synthesized using polymethyl methacrylate (PMMA) as a sacrificial template. The obtained scaffolds were characterized by X-ray powder diffraction (XRPD), infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The Ce4+/Ce3+ ratio in the scaffolds was estimated. In vitro testing revealed good cytocompatibility of the investigated scaffolds in mouse fibroblast cell line (NCTC clone L929). The results obtained regarding bioactivity, antibacterial activity, and controlled drug delivery functions recommend these scaffolds as potential candidates for bone tissue engineering applications.

10.
Int J Biol Macromol ; 211: 410-424, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35569685

RESUMO

A facile, green synthesis methodology to obtain zinc oxide nanoparticles using three polysaccharide gums (Acacia gum, Guar gum and Xanthan gum) of biological origin was developed. Subsequently, biosynthesized zinc oxide nanoparticles were incorporated into a sustainable chitosan hydrogel matrix functionalized with propolis extract. This study has revealed that the selected polysaccharides as chelates represents a suitable approach to synthesize ZnO nanoparticles of particular interest with controlled morphology. The formation of ZnO nanoparticles using polysaccharide gums was confirmed by FTIR, XRD, UV-Vis spectroscopy, thermal analysis, SEM, Raman and photoluminescence spectroscopies. The rheological behaviour of obtained hydrogels was evaluated. The AFM studies demonstrate that all synthesized chitosan incorporated ZnO composites hydrogels functionalized with propolis extract exhibit corrugated topographies. The present study highlights the possible incorporation of various guest molecules into hydrogel matrix due to its tuneable morphologies. The obtained hydrogel composites were cytocompatible in L929 fibroblast cell culture, in a range of concentrations between 50 and 1000 µg/mL, as assessed by MTT, LDH and Live/Dead double staining assays. By enhancing the biological properties, these novel green hydrogels show attractive superior performance in a wide concentration range to develop future in vivo suitable natural platforms as effective delivery systems of pharmacologic agents for biomedical applications.


Assuntos
Quitosana , Própole , Óxido de Zinco , Materiais Biocompatíveis , Quitosana/química , Hidrogéis/química , Extratos Vegetais/química , Polissacarídeos/farmacologia , Óxido de Zinco/química
11.
Gels ; 7(4)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34842650

RESUMO

In recent years, the rising number of bone diseases which affect millions of people worldwide has led to an increased demand for materials with restoring and augmentation properties that can be used in therapies for bone pathologies. In this work, PMMA- MBG composite scaffolds containing ceria (0, 1, 3 mol%) were obtained by the phase separation method. The obtained composite scaffolds were characterized by X-ray diffraction, infrared spectroscopy, and scanning electron microscopy. UV-Vis measurement and EDX analysis confirmed the presence of cerium ions in the composite scaffolds. Evaluation of the in-vitro biocompatibility using MTT assay showed that composite scaffold containing 1 mol% of ceria presented higher viability than control cells (100%) for concentrations ranging between 5 and 50% after 96 h of incubation.

12.
Molecules ; 26(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064423

RESUMO

In the present study, we evaluated for the first time the photoprotective effect of fish bone bioactive peptides (FBBP) preparation isolated from silver carp (Hypophthalmichthys molitrix) discarded tissue using in vitro experimental models of skin cells exposed to ultraviolet B (UVB) irradiation and stressing agents. FBBP preparation was obtained by papain treatment of minced bones and centrifugal ultrafiltration, and the molecular weight (MW) distribution was characterized by size exclusion and reversed-phase high performance liquid chromatography (RP-HPLC). In vitro assessment of the effect of FBBP pretreatment in UVB-irradiated L929 fibroblasts and HaCaT keratinocytes revealed their cytoprotective activity. Their capacity to efficiently reduce reactive oxygen species (ROS) production and lipid peroxidation varied in a dose-dependent manner, and it was greater in fibroblasts. A decrease of proinflammatory cytokines secretion, in particular of tumor necrosis factor alpha (TNF-α), was found after FBBP pretreatment of THP-1-derived inflamed macrophages. Melanin production and tyrosinase activity investigated in UVB-irradiated Mel-Juso cells were lowered in direct relation to FBBP concentrations. FBBP fractions with high radical scavenging activity were separated by ion exchange chromatography, and two collagenic sequences were identified. All these results offer new scientific data on aquaculture fish bone-derived peptides confirming their ability to control the antioxidant, anti-inflammatory and pigmentation processes developed during UV irradiation of skin cells and recommend their use as valuable natural ingredients of photoprotective cosmeceutical products.


Assuntos
Osso e Ossos/efeitos dos fármacos , Inflamação/patologia , Peptídeos/farmacologia , Pigmentação , Pele/efeitos da radiação , Raios Ultravioleta , Animais , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Citoproteção/efeitos dos fármacos , Citoproteção/efeitos da radiação , Peixes , Células HaCaT/efeitos dos fármacos , Células HaCaT/efeitos da radiação , Humanos , Mediadores da Inflamação/metabolismo , Espaço Intracelular/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Malondialdeído/metabolismo , Melaninas/biossíntese , Camundongos , Peso Molecular , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Peptídeos/isolamento & purificação , Pigmentação/efeitos dos fármacos , Pigmentação/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Espectrofotometria Ultravioleta , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...