Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629116

RESUMO

Intestinal fibrosis is a common complication that affects more than 50% of Crohn´s Disease (CD) patients. There is no pharmacological treatment against this complication, with surgery being the only option. Due to the unknown role of P2X7 in intestinal fibrosis, we aim to analyze the relevance of this receptor in CD complications. Surgical resections from CD and non-Inflammatory Bowel Disease (IBD) patients were obtained. Intestinal fibrosis was induced with two different murine models: heterotopic transplant model and chronic-DSS colitis in wild-type and P2X7-/- mice. Human small intestine fibroblasts (HSIFs) were transfected with an siRNA against P2X7 and treated with TGF-ß. A gene and protein expression of P2X7 receptor was significantly increased in CD compared to non-IBD patients. The lack of P2X7 in mice provoked an enhanced collagen deposition and increased expression of several profibrotic markers in both murine models of intestinal fibrosis. Furthermore, P2X7-/- mice exhibited a higher expression of proinflammatory cytokines and a lower expression of M2 macrophage markers. Moreover, the transient silencing of the P2X7 receptor in HSIFs significantly induced the expression of Col1a1 and potentiated the expression of Col4 and Col5a1 after TGF-ß treatment. P2X7 regulates collagen expression in human intestinal fibroblasts, while the lack of this receptor aggravates intestinal fibrosis.


Assuntos
Fibroblastos , Intestinos , Receptores Purinérgicos P2X7 , Animais , Humanos , Camundongos , Colite/metabolismo , Colite/patologia , Colágeno/genética , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Fibroblastos/metabolismo , Intestinos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Fator de Crescimento Transformador beta/farmacologia
2.
Antioxidants (Basel) ; 12(4)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37107175

RESUMO

Autoimmune diseases (ADs) such as Sjögren's syndrome, Kawasaki disease, and systemic sclerosis are characterized by chronic inflammation, oxidative stress, and autoantibodies, which cause joint tissue damage, vascular injury, fibrosis, and debilitation. Epigenetics participate in immune cell proliferation and differentiation, which regulates the development and function of the immune system, and ultimately interacts with other tissues. Indeed, overlapping of certain clinical features between ADs indicate that numerous immunologic-related mechanisms may directly participate in the onset and progression of these diseases. Despite the increasing number of studies that have attempted to elucidate the relationship between miRNAs and oxidative stress, autoimmune disorders and oxidative stress, and inflammation and miRNAs, an overall picture of the complex regulation of these three actors in the pathogenesis of ADs has yet to be formed. This review aims to shed light from a critical perspective on the key AD-related mechanisms by explaining the intricate regulatory ROS/miRNA/inflammation axis and the phenotypic features of these rare autoimmune diseases. The inflamma-miRs miR-155 and miR-146, and the redox-sensitive miR miR-223 have relevant roles in the inflammatory response and antioxidant system regulation of these diseases. ADs are characterized by clinical heterogeneity, which impedes early diagnosis and effective personalized treatment. Redox-sensitive miRNAs and inflamma-miRs can help improve personalized medicine in these complex and heterogeneous diseases.

3.
Biomedicines ; 10(5)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35625832

RESUMO

BACKGROUND: Fibrosis is a common complication of Crohn's disease (CD) in which macrophages play a central role. Epithelial-mesenchymal transition (EMT) and the WNT pathway have been associated with fibrosis. We aim to analyse the relevance of the tissue microenvironment in macrophage phenotype and the EMT process. METHODS: Intestinal surgical resections are obtained from control and CD patients with stenotic or penetrating behaviour. Cytokine's expression, macrophage phenotype, EMT markers and WNT signalling pathway are determined by WB, RT-PCR, ELISA or Cytometry. U937 cells are treated with IFNγ, TNFα, IL1ß, IL4 or IL10 and co-cultured with HT29 cells and, in some cases, are treated with XAV939 or miFZD4. The expression of macrophage, EMT and WNT pathway markers in U937 or HT29 cells is analysed by WB or RT-PCR. RESULTS: IFNγ, WNT6, CD16 and CD86 are increased in the intestinal tissue of CD patients. IFNγ-treated U937 activated the EMT process and WNT pathway in HT29 cells, and the EMT process is mediated by FZD4. CONCLUSIONS: An IFNγ-rich microenvironment polarises macrophages, which induces EMT through the WNT pathway.

4.
Biomedicines ; 10(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35327334

RESUMO

Intestinal epithelial cells (IECs) constitute a defensive physical barrier in mucosal tissues and their disruption is involved in the etiopathogenesis of several inflammatory pathologies, such as Ulcerative Colitis (UC). Recently, the succinate receptor SUCNR1 was associated with the activation of inflammatory pathways in several cell types, but little is known about its role in IECs. We aimed to analyze the role of SUCNR1 in the inflammasome priming and its relevance in UC. Inflammatory and inflammasome markers and SUCNR1 were analyzed in HT29 cells treated with succinate and/or an inflammatory cocktail and transfected with SUCNR1 siRNA in a murine DSS model, and in intestinal resections from 15 UC and non-IBD patients. Results showed that this receptor mediated the inflammasome, priming both in vitro in HT29 cells and in vivo in a murine chronic DSS-colitis model. Moreover, SUNCR1 was also found to be involved in the activation of the inflammatory pathways NFкB and ERK pathways, even in basal conditions, since the transient knock-down of this receptor significantly reduced the constitutive levels of pERK-1/2 and pNFкB and impaired LPS-induced inflammation. Finally, UC patients showed a significant increase in the expression of SUCNR1 and several inflammasome components which correlated positively and significantly. Therefore, our results demonstrated a role for SUCNR1 in basal and stimulated inflammatory pathways in intestinal epithelial cells and suggested a pivotal role for this receptor in inflammasome activation in UC.

5.
Biomedicines ; 9(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34944564

RESUMO

Fibrosis is a pathophysiological process of wound repair that leads to the deposit of connective tissue in the extracellular matrix. This complication is mainly associated with different pathologies affecting several organs such as lung, liver, heart, kidney, and intestine. In this fibrotic process, macrophages play an important role since they can modulate fibrosis due to their high plasticity, being able to adopt different phenotypes depending on the microenvironment in which they are found. In this review, we will try to discuss whether the macrophage phenotype exerts a pivotal role in the fibrosis development in the most important fibrotic scenarios.

6.
Antioxidants (Basel) ; 9(12)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321938

RESUMO

The thioredoxin family consists of a small group of redox proteins present in all organisms and composed of thioredoxins (TRXs), glutaredoxins (GLRXs) and peroxiredoxins (PRDXs) which are found in the extracellular fluid, the cytoplasm, the mitochondria and in the nucleus with functions that include antioxidation, signaling and transcriptional control, among others. The importance of thioredoxin family proteins in neurodegenerative diseases is gaining relevance because some of these proteins have demonstrated an important role in the central nervous system by mediating neuroprotection against oxidative stress, contributing to mitochondrial function and regulating gene expression. Specifically, in the context of Friedreich's ataxia (FRDA), thioredoxin family proteins may have a special role in the regulation of Nrf2 expression and function, in Fe-S cluster metabolism, controlling the expression of genes located at the iron-response element (IRE) and probably regulating ferroptosis. Therefore, comprehension of the mechanisms that closely link thioredoxin family proteins with cellular processes affected in FRDA will serve as a cornerstone to design improved therapeutic strategies.

7.
Biochim Biophys Acta Mol Cell Res ; 1867(12): 118845, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32910990

RESUMO

Mutations in DKC1, NOP10, and TINF2 genes, coding for proteins in telomerase and shelterin complexes, are responsible for diverse diseases known as telomeropathies and ribosomopathies, including dyskeratosis congenita (DC, ORPHA 1775). These genes contribute to the DC phenotype through mechanisms that are not completely understood. We previously demonstrated in models of DC that oxidative stress is an early and independent event that occurs prior to telomere shortening. To clarify the mechanisms that induce oxidative stress, we silenced genes DKC1, NOP10, and TINF2 with siRNA technology. With RNA array hybridisation, we found several altered pathways for each siRNA model. Afterwards, we identified common related genes. The silenced cell line with the most deregulated genes and pathways was siNOP10, followed by siDKC1, and then by siTINF2 to a lesser extent. The siDKC1 and siNOP10 models shared altered expression of genes in the p53 pathway, while siNOP10 and siTINF2 had the adherens junction pathway in common. We also observed that depletion of DKC1 and NOP10 H/ACA ribonucleoprotein produced ribosomal biogenesis impairment which, in turn, promoted p53 pathway activation. Finally, we found that those enzymes responsible for GSH synthesis were down-regulated in models of siDKC1 and siNOP10. In contrast, the silenced cells for TINF2 showed no disruption of ribosomal biogenesis or oxidative stress and did not produce p53 pathway activation. These results indicate that depletion of DKC1 and NOP10 promotes oxidative stress and disrupts ribosomal biogenesis which, in turn, activates the p53 pathway.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Nucleares/genética , Estresse Oxidativo/genética , Ribonucleoproteínas Nucleolares Pequenas/genética , Proteína Supressora de Tumor p53/genética , Linhagem Celular , Mutação/genética , Nucleofosmina , RNA Interferente Pequeno , Ribossomos/genética , Complexo Shelterina , Telomerase/genética , Telômero/genética , Encurtamento do Telômero/genética , Proteínas de Ligação a Telômeros/genética
8.
Antioxidants (Basel) ; 9(4)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326494

RESUMO

: Oxidative stress is an imbalance between production and accumulation of oxygen reactive species and/or reactive nitrogen species in cells and tissues, and the capacity of detoxifying these products, using enzymatic and non-enzymatic components, such as glutathione. Oxidative stress plays roles in several pathological processes in the nervous system, such as neurotoxicity, neuroinflammation, ischemic stroke, and neurodegeneration. The concepts of oxidative stress and rare diseases were formulated in the eighties, and since then, the link between them has not stopped growing. The present review aims to expand knowledge in the pathological processes associated with oxidative stress underlying some groups of rare diseases: Friedreich's ataxia, diseases with neurodegeneration with brain iron accumulation, Charcot-Marie-Tooth as an example of rare neuromuscular disorders, inherited retinal dystrophies, progressive myoclonus epilepsies, and pediatric drug-resistant epilepsies. Despite the discrimination between cause and effect may not be easy on many occasions, all these conditions are Mendelian rare diseases that share oxidative stress as a common factor, and this may represent a potential target for therapies.

9.
Front Genet ; 10: 1104, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798626

RESUMO

Autoimmune rheumatic diseases, such as Sjögren syndrome (SS) and rheumatoid arthritis (RA), are characterized by chronic inflammation and autoimmunity, which cause joint tissue damage and destruction by triggering reduced mobility and debilitation in patients with these diseases. Initiation and maintenance of chronic inflammatory stages account for several mechanisms that involve immune cells as key players and the interaction of the immune cells with other tissues. Indeed, the overlapping of certain clinical and serologic manifestations between SS and RA may indicate that numerous immunologic-related mechanisms are involved in the physiopathology of both these diseases. It is widely accepted that epigenetic pathways play an essential role in the development and function of the immune system. Although many published studies have attempted to elucidate the relation between epigenetic modifications (e.g. DNA methylation, histone post-translational modifications, miRNAs) and autoimmune disorders, the contribution of epigenetic regulation to the pathogenesis of SS and RA is at present poorly understood. This review attempts to shed light from a critical point of view on the identification of the most relevant epigenetic mechanisms related to RA and SS by explaining intricate regulatory processes and phenotypic features of both autoimmune diseases. Moreover, we point out some epigenetic markers which can be used to monitor the inflammation status and the dysregulated immunity in SS and RA. Finally, we discuss the inconvenience of using epigenetic data obtained from bulk immune cell populations instead specific immune cell subpopulations.

11.
Med. oral patol. oral cir. bucal (Internet) ; 23(3): e308-e314, mayo 2018. tab, graf
Artigo em Inglês | IBECS | ID: ibc-175882

RESUMO

BACKGROUND: The study and identification of new biomarkers for periodontal disease, such as microRNAs (miR-NAs), may give us more information about the location and severity of the disease and will serve as a basis for treatment planning and disease-monitoring. miRNAs are a group of small RNAs which are involved in gene regulation by binding to their messenger RNA target (mRNA). In this pilot study, the procedure for purifying miRNAs from gingival crevicular fluid (GCF) was, for the first time, described. In addition, the concentration of miRNAs in GCF was analyzed and compared between patients with moderate or severe chronic periodontitis (CP) and healthy controls. MATERIAL AND METHODS: GCF samples were collected from single-rooted teeth of patients with moderate or severe CP (n=9) and of healthy individuals (n=9). miRNAs were isolated from GCF using miRNeasy Serum/Plasma kit (Qiagen, CA. USA). Reverse transcription polymerase chain reaction (qRT-PCR) was used to determine the expression of a series of miRNAs candidates that are related to bone metabolism. The significance of differences in miRNA levels between both groups was determined using Mann-Whitney U test. RESULTS: The results from this pilot study indicate that miRNAs can be isolated from GCF. Six different miRNAs were analyzed (miR-671, miR-122, miR-1306, miR-27a, miR-223, miR-1226), but only miR-1226 showed statically significant differences between the CP group and healthy controls (p < 0.05). This miRNA was downregulated in patients with CP. CONCLUSIONS: Within the limitations of the present study, it may be concluded that miR-1226 can be a promising biomarker for periodontal disease, adding relevant information to common clinical parameters used for diagnosis and prognosis of periodontitis


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Periodontite Crônica/diagnóstico , Líquido do Sulco Gengival/química , MicroRNAs/análise , Projetos Piloto , Biomarcadores/análise
12.
Sci Data ; 5: 180021, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29509186

RESUMO

Friedreich's ataxia (FRDA; OMIM 229300), an autosomal recessive neurodegenerative mitochondrial disease, is the most prevalent hereditary ataxia. In addition, FRDA patients have shown additional non-neurological features such as scoliosis, diabetes, and cardiac complications. Hypertrophic cardiomyopathy, which is found in two thirds of patients at the time of diagnosis, is the primary cause of death in these patients. Here, we used small RNA-seq of microRNAs (miRNAs) purified from plasma samples of FRDA patients and controls. Furthermore, we present the rationale, experimental methodology, and analytical procedures for dataset analysis. This dataset will facilitate the identification of miRNA signatures and provide new molecular explanation for pathological mechanisms occurring during the natural history of FRDA. Since miRNA levels change with disease progression and pharmacological interventions, miRNAs will contribute to the design of new therapeutic strategies and will improve clinical decisions.


Assuntos
MicroRNA Circulante/genética , Ataxia de Friedreich/genética , Ataxia de Friedreich/fisiopatologia , Humanos , Análise de Sequência de RNA
13.
Curr Pharm Des ; 24(40): 4755-4770, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30644344

RESUMO

BACKGROUND: Cell senescence constitutes a critical process to respond to a variety of insults and adverse circumstances. Senescence involves the detention of DNA replication and cell proliferation, and hence, genetic programs associated with DNA damage response, chromosome stability, chromatin rearrangement, epigenetic reprogramming, and cell cycle are tightly linked to the senescent phenotype. Although senescence increases with age, the real implication of senescence regulation in the progress of aging in humans is largely discussed. In this context, reactive oxygen species (ROS) accumulation has also been postulated to play a critical role in cell homeostasis, aging processes, and control of proliferation. METHODS: The previous years have produced a high increase in data that refine our understanding of the role of ROS, and their relationship with epigenetic events, in determining cellular fate. RESULTS: The accumulating evidence regarding the epigenetic regulation of ROS-mediated processes provides promising tools to deepen in our comprehension of the process of senescence, and to develop novel therapeutic strategies. In this review, we aim to provide an overview of the relationships between oxidative stress and cell senescence. CONCLUSION: We provide information about the role of epigenetic regulation in senescence and aging, collecting recent data from some examples of progeroid syndromes in which cell senescence, oxidative stress and epigenetic mechanisms are severely impaired. Finally, a collection of data is presented regarding current pharmacological approaches that either target or use oxidative stress-related factors or epigenetic regulators as strategies for disease treatment.


Assuntos
Senescência Celular/genética , Epigênese Genética/genética , Estresse Oxidativo/genética , Animais , Senescência Celular/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Síndrome
14.
Redox Biol ; 14: 398-408, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29055871

RESUMO

Loss of function of dyskerin (DKC1), NOP10 and TIN2 are responsible for different inheritance patterns of Dyskeratosis congenita (DC; ORPHA1775). They are key components of telomerase (DKC1 and NOP10) and shelterin (TIN2), and play an important role in telomere homeostasis. They participate in several fundamental cellular processes by contributing to Dyskeratosis congenita through mechanisms that are not fully understood. Presence of oxidative stress was postulated to result from telomerase ablation. However, the resulting disturbed redox status can promote telomere attrition by generating a vicious circle, which promotes cellular senescence. This fact prompted us to study if acute loss of DKC1, NOP10 and TINF2 can promote redox disequilibrium as an early event when telomere shortening has not yet taken place. We generated siRNA-mediated (DKC1, NOP10 and TINF2) cell lines by RNA interference, which was confirmed by mRNA and protein expression analyses. No telomere shortening occurred in any silenced cell line. Depletion of H/ACA ribonucleoproteins DKC1 and NOP10 diminished telomerase activity via TERC down-regulation, and produced alterations in pseudouridylation and ribosomal biogenesis. An increase in the GSSG/GSH ratio, carbonylated proteins and oxidized peroxiredoxin-6 was observed, in addition to MnSOD and TRX1 overexpression in the siRNA DC cells. Likewise, high PARylation levels and high PARP1 protein expression were detected. In contrast, the silenced TINF2 cells did not alter any evaluated oxidative stress marker. Altogether these findings lead us to conclude that loss of DKC1 and NOP10 functions induces oxidative stress in a telomere shortening independent manner.


Assuntos
Estresse Oxidativo , Telomerase/metabolismo , Encurtamento do Telômero , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Senescência Celular , Dano ao DNA , Disceratose Congênita/genética , Disceratose Congênita/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferência de RNA , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Telomerase/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
15.
Crit Rev Clin Lab Sci ; 54(7-8): 529-550, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29226748

RESUMO

Epigenetic modifications and regulators represent potential molecular elements which control relevant physiological and pathological features, thereby contributing to the natural history of human disease. These epigenetic modulators can be employed as disease biomarkers, since they show several advantages and provide information about gene function, thus explaining differences among patient endophenotypes. In addition, epigenetic biomarkers can incorporate information regarding the effects of the environment and lifestyle on health and disease, and monitor the effect of applied therapies. Technologies used to analyze these epigenetic biomarkers are constantly improving, becoming much easier to use. Laboratory professionals can easily acquire experience and techniques are becoming more affordable. A high number of epigenetic biomarker candidates are being continuously proposed, making now the moment to adopt epigenetics in the clinical laboratory and convert epigenetic marks into reliable biomarkers. In this review, we describe some current promising epigenetic biomarkers and technologies being applied in clinical practice. Furthermore, we will discuss some laboratory strategies and kits to accelerate the adoption of epigenetic biomarkers into clinical routine. The likelihood is that over time, better markers will be identified and will likely be incorporated into future multi-target assays that might help to optimize its application in a clinical laboratory. This will improve cost-effectiveness, and consequently encourage the development of theragnosis and the application of precision medicine.


Assuntos
Epigênese Genética , Marcadores Genéticos , Genômica , Metilação de DNA , Humanos , Técnicas de Diagnóstico Molecular
16.
Biochim Biophys Acta Mol Basis Dis ; 1863(3): 801-809, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28065847

RESUMO

Charcot-Marie-Tooth disease is a rare peripheral neuropathy for which there is no specific treatment. Some forms of Charcot-Marie-Tooth are due to mutations in the GDAP1 gene. A striking feature of mutations in GDAP1 is that they have a variable clinical manifestation, according to disease onset and progression, histology and mode of inheritance. Studies in cellular and animal models have revealed a role of GDAP1 in mitochondrial morphology and distribution, calcium homeostasis and oxidative stress. To get a better understanding of the disease mechanism we have generated models of over-expression and RNA interference of the Drosophila Gdap1 gene. In order to get an overview about the changes that Gdap1 mutations cause in our disease model, we have combined a comprehensive determination of the metabolic profile in the flies by nuclear magnetic resonance spectroscopy with gene expression analyses and biophysical tests. Our results revealed that both up- and down-regulation of Gdap1 results in an early systemic inactivation of the insulin pathway before the onset of neuromuscular degeneration, followed by an accumulation of carbohydrates and an increase in the ß-oxidation of lipids. Our findings are in line with emerging reports of energy metabolism impairments linked to different types of neural pathologies caused by defective mitochondrial function, which is not surprising given the central role of mitochondria in the control of energy metabolism. The relationship of mitochondrial dynamics with metabolism during neurodegeneration opens new avenues to understand the cause of the disease, and for the discovery of new biomarkers and treatments.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Insulina/metabolismo , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Animais , Metabolismo dos Carboidratos , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Humanos , Metabolismo dos Lipídeos , Metaboloma , Mitocôndrias/genética , Proteínas do Tecido Nervoso/genética , Interferência de RNA , Regulação para Cima
17.
Hum Mol Genet ; 24(1): 21-36, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25122658

RESUMO

One of the genes involved in Charcot-Marie-Tooth (CMT) disease, an inherited peripheral neuropathy, is GDAP1. In this work, we show that there is a true ortholog of this gene in Drosophila, which we have named Gdap1. By up- and down-regulation of Gdap1 in a tissue-specific manner, we show that altering its levels of expression produces changes in mitochondrial size, morphology and distribution, and neuronal and muscular degeneration. Interestingly, muscular degeneration is tissue-autonomous and not dependent on innervation. Metabolic analyses of our experimental genotypes suggest that alterations in oxidative stress are not a primary cause of the neuromuscular degeneration but a long-term consequence of the underlying mitochondrial dysfunction. Our results contribute to a better understanding of the role of mitochondria in CMT disease and pave the way to generate clinically relevant disease models to study the relationship between mitochondrial dynamics and peripheral neurodegeneration.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Mitocôndrias/fisiologia , Doenças Neuromusculares/etiologia , Animais , Doença de Charcot-Marie-Tooth , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Tamanho Mitocondrial , Proteínas do Tecido Nervoso/metabolismo , Doenças Neuromusculares/patologia , Filogenia , Retina/metabolismo
18.
Mol Neurobiol ; 51(3): 932-46, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24838580

RESUMO

Lafora disease (LD, OMIM 254780, ORPHA501) is a fatal neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies and caused, in the vast majority of cases, by mutations in either EPM2A or EPM2B genes, encoding respectively laforin and malin. In the last years, several reports have revealed molecular details of these two proteins and have identified several processes affected in LD, but the pathophysiology of the disease still remains largely unknown. Since autophagy impairment has been reported as a characteristic treat in both Lafora disease cell and animal models, and as there is a link between autophagy and mitochondrial performance, we sought to determine if mitochondrial function could be altered in those models. Using fibroblasts from LD patients, deficient in laforin or malin, we found mitochondrial alterations, oxidative stress and a deficiency in antioxidant enzymes involved in the detoxification of reactive oxygen species (ROS). Similar results were obtained in brain tissue samples from transgenic mice deficient in either the EPM2A or EPM2B genes. Furthermore, in a proteomic analysis of brain tissue obtained from Epm2b-/- mice, we observed an increase in a modified form of peroxiredoxin-6, an antioxidant enzyme involved in other neurological pathologies, thus corroborating an alteration of the redox condition. These data support that oxidative stress produced by an increase in ROS production and an impairment of the antioxidant enzyme response to this stress play an important role in development of LD.


Assuntos
Antioxidantes/metabolismo , Doença de Lafora/genética , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Animais , Autofagia/genética , Humanos , Doença de Lafora/metabolismo , Doença de Lafora/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação/genética , Proteômica
19.
Aging (Albany NY) ; 6(3): 231-45, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24799429

RESUMO

Werner Syndrome (WS, ICD-10 E34.8, ORPHA902) and Atypical Werner Syndrome (AWS, ICD-10 E34.8, ORPHA79474) are very rare inherited syndromes characterized by premature aging. While approximately 90% of WS individuals have any of a range of mutations in theWRN gene, there exists a clinical subgroup in which the mutation occurs in the LMNA/C gene in heterozygosity. Although both syndromes exhibit an age-related pleiotropic phenotype, AWS manifests the onset of the disease during childhood, while major symptoms in WS appear between the ages of 20 and 30. To study the molecular mechanisms of progeroid diseases provides a useful insight into the normal aging process. Main changes found were the decrease in Cu/Zn and Mn SOD activities in the three cell lines. In AWS, both mRNA SOD and protein levels were also decreased. Catalase and glutathione peroxidases decrease, mainly in AWS. Glutaredoxin (Grx) and thioredoxin (Trx) protein expression was lower in the three progeroid cell lines. Grx and Trx were subjected to post-transcriptional regulation, because protein expression was reduced although mRNA levels were not greatly affected in WS. Low antioxidant defense and oxidative stress occur simultaneously in these rare genetic instability disorders at the onset of progeroid disease.


Assuntos
Estresse Oxidativo , Síndrome de Werner/metabolismo , Adolescente , Adulto , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Senilidade Prematura/patologia , Antioxidantes/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Proliferação de Células , Criança , Exodesoxirribonucleases/genética , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Glutationa/metabolismo , Humanos , Lamina Tipo A/genética , Masculino , Mutação , Progéria/genética , Progéria/metabolismo , Progéria/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RecQ Helicases/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Síndrome de Werner/genética , Síndrome de Werner/patologia , Helicase da Síndrome de Werner
20.
Free Radic Biol Med ; 75 Suppl 1: S3, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26461333

RESUMO

Epigenetics is defined as the mitotically/meiotically heritable changes in gene expression that are not due to changes in the primary DNA sequence. Over recent years, growing evidence has suggested a link between redox metabolism and the control of epigenetic mechanisms. The effect of the redox control, oxidative stress, and glutathione (GSH) on the epigenetic mechanisms occur at different levels affecting DNA methylation, miRNAs expression, and histone post-translational modifications (PTMs). Furthermore, a number of redox PTMs are being described, so enriching the histone code. Pioneer works showed how oxidized GSH inhibits the activity of S-adenosyl methionine synthetase, MAT1A, a key enzyme involved in the synthesis of S-adenosyl methionine (SAM), which is used by DNA methyltransferases (DNMTs) and histone methyltransferases (HMTs). Alteration in NAD /NADH ratio affects the activity of class III histone deacetylases (HDACs) and poly-ADP ribosyltransferases (PARPs). Furthermore, the iron redox state of the catalytic center of key enzymes influences the activity of HDACs and the activity of Tet methylcytosine dioxygenases (DNA demetylases) and JmjC histone demethylases. In this communication, we will show the intricate mechanisms that participate in the redox control of the epigenetic mechanisms. We specially focus our work in the characterization of new PTMs in histones, such as histone carbonylation and glutathionylation. Demonstrating how GSH influences the epigenetic mechanisms beyond a mere regulation of SAM levels. The mechanisms described in this communication place GSH and redox control in the landscape of the epigenetic regulation. The results shown underscore the relevant role that oxidative stress and GSH play as key factors in epigenetics, opening a new window for understating the underlying mechanisms that control cell differentiation, proliferation, development, and disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...