Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080052

RESUMO

The remarkable properties of Eu2+-activated phosphors, related to the broad and intense luminescence of Eu2+ ions, showed a high potential for a wide range of optical-related applications. Oxy-fluoride glass-ceramic containing Europium (II)-doped CaF2 nanocrystals embedded in silica matrix were produced in two steps: glass-ceramization in air at 800° with Eu3+-doped CaF2 nanocrystals embedded followed by Eu3+ to Eu2+ reduction during annealing in reducing atmosphere. The broad, blue luminescence band at 425 nm and with the long, weak tail in the visible range is assigned to the d → f type transition of the Eu2+ located inside the CaF2 nanocrystals in substitutional and perturbed sites, respectively; the photoluminescence quantum yield was about 0.76. The X-ray photoelectron spectroscopy and Electron paramagnetic spectroscopy confirmed the presence of Eu2+ inside the CaF2 nanocrystals. Thermoluminescence curves recorded after X-ray irradiation of un-doped and Eu2+-doped glass-ceramics showed a single dominant glow peak at 85 °C related to the recombination between F centers and Eu2+ related hole within the CaF2 nanocrystals. The applicability of the procedure can be tested to obtain an oxy-fluoride glass-ceramic doped with other divalent ions such as Sm2+, Yb2+, as nanophosphors for radiation detector or photonics-related applications.

2.
Materials (Basel) ; 14(22)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34832273

RESUMO

Rare-earth doped oxyfluoride glass ceramics represent a new generation of tailorable optical materials with high potential for optical-related applications such as optical amplifiers, optical waveguides, and white LEDs. Their key features are related to the high transparency and remarkable luminescence properties, while keeping the thermal and chemical advantages of oxide glasses. Sol-gel chemistry offers a flexible synthesis approach with several advantages, such as lower processing temperature, the ability to control the purity and homogeneity of the final materials on a molecular level, and the large compositional flexibility. The review will be focused on optical properties of sol-gel derived nano-glass ceramics related to the RE-doped luminescent nanocrystals (fluorides, chlorides, oxychlorides, etc.) such as photoluminescence, up-conversion luminescence, thermoluminescence and how these properties are influenced by their specific processing, mostly focusing on the findings from our group and similar ones in the literature, along with a discussion of perspectives, potential challenges, and future development directions.

3.
Materials (Basel) ; 13(13)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635322

RESUMO

In this study, we report on the structural, magnetic, and optical properties of Tb3+-doped CeF3 nanocrystals prepared via a polyol-assisted route, followed by calcination. X-ray diffraction analysis and electron microscopy investigations have shown the formation of a dominant Ce0.75F3 nanocrystalline phase (of about 99%), with a relatively uniform distribution of nanocrystals about 15 nm in size. Magnetization curves showed typical paramagnetic properties related to the presence of Ce3+ and Tb3+ ions. The magnetic susceptibility showed a weak inflexion at about 150 K, assigned to the cerium ions' crystal field splitting. Under UV light excitation of the Ce3+ ions, we observed Tb3+ green luminescence with a quantum yield of about 20%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...