Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 21(3): 1285-1299, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38345400

RESUMO

Understanding and predicting protein aggregation represents one of the major challenges in accelerating the pharmaceutical development of protein therapeutics. In addition to maintaining the solution pH, buffers influence both monoclonal antibody (mAb) aggregation in solution and the aggregation mechanisms since the latter depend on the protein charge. Molecular-level insight is necessary to understand the relationship between the buffer-mAb interaction and mAb aggregation. Here, we use all-atom molecular dynamics simulations to investigate the interaction of phosphate (Phos) and citrate (Cit) buffer ions with the Fab and Fc domains of mAb COE3. We demonstrate that Phos and Cit ions feature binding mechanisms, with the protein that are very different from those reported previously for histidine (His). These differences are reflected in distinctive ion-protein binding modes and adsorption/desorption kinetics of the buffer molecules from the mAb surface and result in dissimilar effects of these buffer species on mAb aggregation. While His shows significant affinity toward hydrophobic amino acids on the protein surface, Phos and Cit ions preferentially bind to charged amino acids. We also show that Phos and Cit anions provide bridging contacts between basic amino acids in neighboring proteins. The implications of such contacts and their connection to mAb aggregation in therapeutic formulations are discussed.


Assuntos
Anticorpos Monoclonais , Agregados Proteicos , Anticorpos Monoclonais/química , Soluções Tampão , Concentração de Íons de Hidrogênio , Íons , Aminoácidos
2.
Mol Pharm ; 21(2): 704-717, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38194618

RESUMO

Monoclonal antibodies (mAbs) are active components of therapeutic formulations that interact with the water-vapor interface during manufacturing, storage, and administration. Surface adsorption has been demonstrated to mediate antibody aggregation, which leads to a loss of therapeutic efficacy. Controlling mAb adsorption at interfaces requires a deep understanding of the microscopic processes that lead to adsorption and identification of the protein regions that drive mAb surface activity. Here, we report all-atom molecular dynamics (MD) simulations of the adsorption behavior of a full IgG1-type antibody at the water/vapor interface. We demonstrate that small local changes in the protein structure play a crucial role in promoting adsorption. Also, interfacial adsorption triggers structural changes in the antibody, potentially contributing to the further enhancement of surface activity. Moreover, we identify key amino acid sequences that determine the adsorption of antibodies at the water-air interface and outline strategies to control the surface activity of these important therapeutic proteins.


Assuntos
Anticorpos Monoclonais , Vapor , Anticorpos Monoclonais/química , Adsorção , Água/química , Composição de Medicamentos
3.
Mol Phys ; 121(19-20): e2236248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107421

RESUMO

The aggregation of therapeutic proteins in solution has attracted significant interest, driving efforts to understand the relationship between microscopic structural changes and protein-protein interactions determining aggregation processes in solution. Additionally, there is substantial interest in being able to predict aggregation based on protein structure as part of molecular developability assessments. Molecular Dynamics provides theoretical tools to complement experimental studies and to interrogate and identify the microscopic mechanisms determining aggregation. Here we perform all-atom MD simulations to study the structure and inter-protein interaction of the Fab and Fc fragments of the monoclonal antibody (mAb) COE3. We unravel the role of ion-protein interactions in building the ionic double layer and determining effective inter-protein interaction. Further, we demonstrate, using various state-of-the-art force fields (charmm, gromos, amber, opls/aa), that the protein solvation, ionic structure and protein-protein interaction depend significantly on the force field parameters. We perform SANS and Static Light Scattering experiments to assess the accuracy of the different forcefields. Comparison of the simulated and experimental results reveal significant differences in the forcefields' performance, particularly in their ability to predict the protein size in solution and inter-protein interactions quantified through the second virial coefficients. In addition, the performance of the forcefields is correlated with the protein hydration structure.

4.
Sci Rep ; 13(1): 12684, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542147

RESUMO

Soft-matter nanoparticles are of great interest for their applications in biotechnology, therapeutic delivery, and in vivo imaging. Underpinning this is their biocompatibility, potential for selective targeting, attractive pharmacokinetic properties, and amenability to downstream functionalisation. Morphological diversity inherent to soft-matter particles can give rise to enhanced functionality. However, this diversity remains untapped in clinical and industrial settings, and only the simplest of particle architectures [spherical lipid vesicles and lipid/polymer nanoparticles (LNPs)] have been routinely exploited. This is partially due to a lack of appropriate methods for their synthesis. To address this, we have designed a scalable microfluidic hydrodynamic focusing (MHF) technology for the controllable, rapid, and continuous production of lyotropic liquid crystalline (LLC) nanoparticles (both cubosomes and hexosomes), colloidal dispersions of higher-order lipid assemblies with intricate internal structures of 3-D and 2-D symmetry. These particles have been proposed as the next generation of soft-matter nano-carriers, with unique fusogenic and physical properties. Crucially, unlike alternative approaches, our microfluidic method gives control over LLC size, a feature we go on to exploit in a fusogenic study with model cell membranes, where a dependency of fusion on particle diameter is evident. We believe our platform has the potential to serve as a tool for future studies involving non-lamellar soft nanoparticles, and anticipate it allowing for the rapid prototyping of LLC particles of diverse functionality, paving the way toward their eventual wide uptake at an industrial level.


Assuntos
Cristais Líquidos , Nanopartículas , Microfluídica , Nanopartículas/química , Cristais Líquidos/química , Polímeros , Lipídeos/química
5.
Mol Pharm ; 19(9): 3288-3303, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35946408

RESUMO

Histidine, a widely used buffer in monoclonal antibody (mAb) formulations, is known to reduce antibody aggregation. While experimental studies suggest a nonelectrostatic, nonstructural (relating to secondary structure preservation) origin of the phenomenon, the underlying microscopic mechanism behind the histidine action is still unknown. Understanding this mechanism will help evaluate and predict the stabilizing effect of this buffer under different experimental conditions and for different mAbs. We have used all-atom molecular dynamics simulations and contact-based free energy calculations to investigate molecular-level interactions between the histidine buffer and mAbs, which lead to the observed stability of therapeutic formulations in the presence of histidine. We reformulate the Spatial Aggregation Propensity index by including the buffer-protein interactions. The buffer adsorption on the protein surface leads to lower exposure of the hydrophobic regions to water. Our analysis indicates that the mechanism behind the stabilizing action of histidine is connected to the shielding of the solvent-exposed hydrophobic regions on the protein surface by the buffer molecules.


Assuntos
Histidina , Simulação de Dinâmica Molecular , Anticorpos Monoclonais/química , Composição de Medicamentos , Histidina/química , Interações Hidrofóbicas e Hidrofílicas
9.
J Am Chem Soc ; 143(40): 16556-16565, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34591464

RESUMO

There is a growing demand to develop smart nanomaterials that are structure-responsive as they have the potential to offer enhanced dose, temporal and spatial control of compounds and chemical processes. The naturally occurring pH gradients found throughout the body make pH an attractive stimulus for guiding the response of a nanocarrier to specific locations or (sub)cellular compartments in the body. Here we have engineered highly sensitive lyotropic liquid crystalline nanoparticles that reversibly respond to changes in pH by altering the connectivity within their structure at physiological temperatures. At pH 7.4, the nanoparticles have an internal structure consisting of discontinuous inverse micellar "aqueous pockets" based on space group Fd3m. When the pH is ≤6, the nanoparticles change from a compartmentalized to an accessible porous internal structure based on a 2D inverse hexagonal phase (plane group p6mm). We validate the internal symmetry of the nanoparticles using small-angle X-ray scattering and cryogenic transmission electron microscopy. The high-resolution electron microscopy images obtained have allowed us for the first time to directly visualize the internal structure of the Fd3m nanoparticles and resolve the two different-sized inverse micelles that make up the structural motif within the Fd3m unit cell, which upon structural analysis reveal excellent agreement with theoretical geometrical models.


Assuntos
Lipossomos , Nanopartículas
10.
Soft Matter ; 17(23): 5763-5771, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34019613

RESUMO

Mixtures of fatty acids and phospholipids can form hexagonal (HII) and inverse bicontinuous cubic phases, the latter of which are implicated in various cellular processes and have wide-ranging biotechnological applications in protein crystallisation and drug delivery systems. Therefore, it is vitally important to understand the formation conditions of inverse bicontinuous cubic phases and how their properties can be tuned. We have used differential scanning calorimetry and synchrotron-based small angle and wide angle X-ray scattering (SAXS/WAXS) to investigate the polymorphic phase behaviour of palmitic acid/partially-methylated phospholipid mixtures, and how headgroup methylation impacts on inverse bicontinuous cubic phase formation. We find that upon partial methylation of the phospholipid headgroup (1 or 2 methyl substituents) inverse bicontinuous cubic phases are formed (of the Im3m spacegroup), which is not the case with 0 or 3 methyl substituents. This shows how important headgroup methylation is for controlling phase behaviour and how a change in headgroup methylation can be used to controllably tune various inverse bicontinuous phase features such as their lattice parameter and the temperature range of their stability.


Assuntos
Ácido Palmítico , Etanolaminas , Metilação , Espalhamento a Baixo Ângulo , Difração de Raios X
11.
Phys Chem Chem Phys ; 23(6): 3693-3706, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33533338

RESUMO

Microfluidics has been proposed as an attractive alternative to conventional bulk methods used in the generation of self-assembled biomimetic structures, particularly where there is a desire for more scalable production. The approach also allows for greater control over the self-assembly process, and parameters such as particle architecture, size, and composition can be finely tuned. Microfluidic techniques used in the generation of microscale assemblies (giant vesicles and higher-order multi-compartment assemblies) are fairly well established. These tend to rely on microdroplet templation, and the resulting structures have found use as comparmentalised motifs in artificial cells. Challenges in generating sub-micron droplets have meant that reconfiguring this approach to form nano-scale structures is not straightforward. This is beginning to change however, and recent technological advances have instigated the manufacture and manipulation of an increasingly diverse repertoire of biomimetic nano-assemblies, including liposomes, polymersomes, hybrid particles, multi-lamellar structures, cubosomes, hexosomes, nanodiscs, and virus-like particles. The following review will discuss these higher-order self-assembled nanostructures, including their biochemical and industrial applications, and techniques used in their production and analysis. We suggest ways in which existing technologies could be repurposed for the enhanced design, manufacture, and exploitation of these structures and discuss potential challenges and future research directions. By compiling recent advances in this area, it is hoped we will inspire future efforts toward establishing scalable microfluidic platforms for the generation of biomimetic nanoparticles of enhanced architectural and functional complexity.

12.
Faraday Discuss ; 222(0): 8-9, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32490453

RESUMO

This Faraday Discussion volume is unique in the hundred plus year history of the Faraday Discussion series, being produced at a time of unprecedented circumstances worldwide and without the preceding Faraday Discussion conference having taken place.


Assuntos
Infecções por Coronavirus/diagnóstico , Medições Luminescentes/métodos , Nanoestruturas/química , Pneumonia Viral/diagnóstico , Silício/química , COVID-19 , Humanos , Imagem Óptica , Pandemias , Porosidade
13.
Soft Matter ; 16(25): 5925-5932, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32538402

RESUMO

Lipid asymmetry is a crucial property of biological membranes and significantly influences their physical and mechanical properties. It is responsible for maintaining different chemical environments on the external and internal surfaces of cells and organelles and plays a vital role in many biological processes such as cell signalling and budding. In this work we show, using non-equilibrium molecular dynamics (NEMD) simulations, that thermal fields can induce lipid asymmetry in biological membranes. We focus our investigation on cholesterol, an abundant lipid in the plasma membrane, with a rapid flip-flop rate, significantly influencing membrane properties. We demonstrate that thermal fields induce membrane asymmetry with cholesterol showing thermophobic behaviour and therefore accumulating on the cold side of the membrane. This work highlights a possible experimental route to preparing and controlling asymmetry in synthetic membranes.


Assuntos
Colesterol/química , Bicamadas Lipídicas/química , 1,2-Dipalmitoilfosfatidilcolina/química , Simulação de Dinâmica Molecular , Temperatura , Termodinâmica
14.
Langmuir ; 35(50): 16521-16527, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31702159

RESUMO

Dispersions of nonlamellar lipid membrane assemblies are gaining increasing interest for drug delivery and protein therapeutic application. A key bottleneck has been the lack of rational design rules for these systems linking different lipid species and conditions to defined lattice parameters and structures. We have developed robust methods to form cubosomes (nanoparticles with porous internal structures) with water channel diameters of up to 171 Å, which are over 4 times larger than archetypal cubosome structures. The water channel diameter can be tuned via the incorporation of cholesterol and the charged lipid DOPA, DOPG, or DOPS. We have found that large molecules can be incorporated into the porous cubosome structure and that these molecules can interact with the internal cubosome membrane. This offers huge potential for accessible encapsulation and protection of biomolecules and development of confined interfacial reaction environments.


Assuntos
Colesterol/química , Engenharia , Glicerofosfolipídeos/química
15.
Front Cell Dev Biol ; 7: 187, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616666

RESUMO

Biological membranes constantly modulate their fluidity for proper functioning of the cell. Modulation of membrane properties via regulation of fatty acid composition has gained a renewed interest owing to its relevance in endocytosis, endoplasmic reticulum membrane homeostasis, and adaptation mechanisms in the deep sea. Endowed with significant degrees of freedom, the presence of free fatty acids can alter the curvature of membranes which in turn can alter the response of curvature sensing proteins, thus defining adaptive ways to reconfigure membranes. Most significantly, recent experiments demonstrated that polyunsaturated lipids facilitate membrane bending and fission by endocytic proteins - the first step in the biogenesis of synaptic vesicles. Despite the vital roles of fatty acids, a systematic study relating the interactions between fatty acids and membrane and the consequent effect on the bio-mechanics of membranes under the influence of fatty acids has been sparse. Of specific interest is the vast disparity in the properties of cis and trans fatty acids, that only differ in the orientation of the double bond and yet have entirely unique and opposing chemical properties. Here we demonstrate a combined X-ray diffraction and membrane fluctuation analysis method to couple the structural properties to the biophysical properties of fatty acid-laden membranes to address current gaps in our understanding. By systematically doping pure dioleoyl phosphatidylcholine (DOPC) membranes with cis fatty acid and trans fatty acid we demonstrate that the presence of fatty acids doesn't always fluidize the membrane. Rather, an intricate balance between the curvature, molecular interactions, as well as the amount of specific fatty acid dictates the fluidity of membranes. Lower concentrations are dominated by the nature of interactions between the phospholipid and the fatty acids. Trans fatty acid increases the rigidity while decreasing the area per lipid similar to the properties depicted by the addition of saturated fatty acids to lipidic membranes. Cis fatty acid however displays the accepted view of having a fluidizing effect at small concentrations. At higher concentrations curvature frustration dominates, leading to increased rigidity irrespective of the type of fatty acid. These results are consistent with theoretical predictions as detailed in the manuscript.

16.
Adv Mater ; 31(35): e1900818, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31222858

RESUMO

Amphiphilic lipids aggregate in aqueous solution into a variety of structural arrangements. Among the plethora of ordered structures that have been reported, many have also been observed in nature. In addition, due to their unique morphologies, the hydrophilic and hydrophobic domains, very high internal interfacial surface area, and the multitude of possible order-order transitions depending on environmental changes, very promising applications have been developed for these systems in recent years. These include crystallization in inverse bicontinuous cubic phases for membrane protein structure determination, generation of advanced materials, sustained release of bioactive molecules, and control of chemical reactions. The outstanding diverse functionalities of lyotropic liquid crystalline phases found in nature and industry are closely related to the topology, including how their nanoscopic domains are organized. This leads to notable examples of correlation between structure and macroscopic properties, which is itself central to the performance of materials in general. The physical origin of the formation of the known classes of lipidic lyotropic liquid crystalline phases, their structure, and their occurrence in nature are described, and their application in materials science and engineering, biology, medical, and pharmaceutical products, and food science and technology are exemplified.

17.
Faraday Discuss ; 214: 9-12, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31050350
18.
Phys Chem Chem Phys ; 21(3): 1471-1477, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30607404

RESUMO

The skin surface, our first barrier against the external environment, is covered by the sebum oil, a lipid film composed of sebaceous and epidermal lipids, which is important in the regulation of the hydration level of our skin. Here, we investigate the pathways leading to the transfer of epidermal lipids from the skin lipid bilayer to the sebum. We show that the sebum triglycerides, a major component of sebum, interact strongly with the epidermal lipids and extract them from the bilayer. Using microsecond time scale molecular dynamics simulations, we identify and quantify the free energy associated with the skin lipid extraction process.


Assuntos
Epiderme/química , Bicamadas Lipídicas/química , Sebo/química , Triglicerídeos/química , Ceramidas/química , Colesterol/química , Ácidos Graxos/química , Simulação de Dinâmica Molecular , Extração em Fase Sólida , Termodinâmica
19.
J Colloid Interface Sci ; 538: 75-82, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30500469

RESUMO

The effect of glycerol with sodium chloride (NaCl) on the phase behaviour of sodium dodecyl sulfate (SDS) near the Krafft point was studied by surface tension analysis using the pendant drop method. The critical micelle concentration (CMC) and Krafft Temperature (TK) of SDS in water: glycerol mixtures, across the full composition range, and in NaCl solutions within 0.005-0.1 M were obtained. The pendant drop method successfully allowed us to determine the Krafft point of SDS in high glycerol systems where other traditional methods (e.g. conductivity) have been ineffective. Overall the addition of glycerol increases the CMC and the TK, thus shifting the Krafft point of SDS to higher temperatures (increasing crystallisation temperatures) and higher SDS content in the presence of glycerol, which is interpreted as a result of the reduction in solvent polarity which opposes micellization. The addition of NaCl to the SDS - water-glycerol systems brings the CMC back down, while having no significant effect on the TK. Our results establish a robust route for tuning the Krafft point of model surfactant SDS by adjusting solvent quality and salt content.

20.
Langmuir ; 35(3): 729-738, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30562468

RESUMO

The interactions between supported cationic surfactant bilayers were measured by colloidal probe atomic force spectroscopy, and the effect of different halide salts was investigated. Di(alkylisopropylester)dimethylammonium methylsulfate (DIPEDMAMS) bilayers were fabricated by the vesicle fusion technique on muscovite mica. The interactions between the bilayers were measured in increasing concentrations of NaCl, NaBr, NaI, and CaCl2. In NaCl, the bilayer interactions were repulsive at all concentrations investigated, and the Debye length and surface potential were observed to decrease with increasing concentration. The interactions were found to follow the electrical double layer (EDL) component of DLVO theory well. However, van der Waals forces were not detected; instead, a strong hydration repulsion was observed at short separations. CaCl2 had a similar effect on the interactions as NaCl. NaBr and NaI were observed to be more efficient at decreasing surface potential than the chloride salts, with the efficacy increasing with the ionic radius.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...