Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Science ; 381(6654): 216-221, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37440632

RESUMO

The domestication of forest trees for a more sustainable fiber bioeconomy has long been hindered by the complexity and plasticity of lignin, a biopolymer in wood that is recalcitrant to chemical and enzymatic degradation. Here, we show that multiplex CRISPR editing enables precise woody feedstock design for combinatorial improvement of lignin composition and wood properties. By assessing every possible combination of 69,123 multigenic editing strategies for 21 lignin biosynthesis genes, we deduced seven different genome editing strategies targeting the concurrent alteration of up to six genes and produced 174 edited poplar variants. CRISPR editing increased the wood carbohydrate-to-lignin ratio up to 228% that of wild type, leading to more-efficient fiber pulping. The edited wood alleviates a major fiber-production bottleneck regardless of changes in tree growth rate and could bring unprecedented operational efficiencies, bioeconomic opportunities, and environmental benefits.


Assuntos
Edição de Genes , Lignina , Populus , Madeira , Carboidratos/análise , Lignina/genética , Madeira/genética , Sistemas CRISPR-Cas , Populus/genética , Papel , Crescimento Sustentável
3.
Carbohydr Polym ; 314: 120959, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173053

RESUMO

Cellulose, the major component of secondary cell walls, is the most abundant renewable long-chain polymer on earth. Nanocellulose has become a prominent nano-reinforcement agent for polymer matrices in various industries. We report the generation of transgenic hybrid poplar overexpressing the Arabidopsis gibberellin 20-oxidase1 gene driven by a xylem-specific promoter to increase gibberellin (GA) biosynthesis in wood. X-ray diffraction (XRD) and sum frequency generation spectroscopic (SFG) analyses showed that cellulose in transgenic trees was less crystalline, but the crystal size was larger. The nanocellulose fibrils prepared from transgenic wood had an increased size compared to those from wild type. When such fibrils were used as a reinforcing agent in sheet paper preparation, the mechanical strength of the paper was significantly enhanced. Engineering the GA pathway can therefore affect nanocellulose properties, providing a new strategy for expanding nanocellulose applications.


Assuntos
Arabidopsis , Populus , Giberelinas , Xilema/genética , Xilema/metabolismo , Oxigenases de Função Mista/metabolismo , Madeira/metabolismo , Celulose/química , Arabidopsis/genética , Arabidopsis/metabolismo , Populus/genética , Populus/metabolismo
4.
Mol Ecol Resour ; 23(5): 1092-1107, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36789493

RESUMO

Many recent studies have provided significant insights into polyploid breeding, but limited research has been carried out on trees. The genomic information needed to understand growth and response to abiotic stress in polyploidy trees is largely unknown, but has become critical due to the threats to forests imposed by climate change. Populus alba 'Berolinensis,' also known "Yinzhong poplar," is a triploid poplar from northeast China. This hybrid triploid poplar is widely used as a landscape ornamental and in urban forestry owing to its adaptation to adverse environments and faster growth than its parental diploid. It is an artificially synthesized male allotriploid hybrid, with three haploid genomes of P. alba 'Berolinensis' originating from different poplar species, so it is attractive for studying polyploidy genomic mechanisms in heterosis. In this study, we focused on the allelic genomic interactions in P. alba 'Berolinensis,' and generated a high-quality chromosome-level genome assembly consisting of 19 allelic chromosomes. Its three haploid chromosome sets are polymorphic with an average of 25.73 nucleotide polymorphism sites per kilobase. We found that some stress-related genes such as RD22 and LEA7 exhibited sequence differences between different haploid genomes. The genome assembly has been deposited in our polyploid genome online analysis website TreeGenomes (https://www.treegenomes.com). These polyploid genome-related resources will provide a critical foundation for the molecular breeding of P. alba 'Berolinensis' and help us uncover the allopolyploidization effects of heterosis and abiotic stress resistance and traits of polyploidy species in the future.


Assuntos
Populus , Triploidia , Populus/genética , Melhoramento Vegetal , Diploide , Cromossomos
5.
Plant Physiol ; 191(2): 1122-1137, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36494195

RESUMO

As essential organs of reproduction in angiosperms, flowers, and the genetic mechanisms of their development have been well characterized in many plant species but not in the woody tree yellowhorn (Xanthoceras sorbifolium). Here, we focused on the double flower phenotype in yellowhorn, which has high ornamental value. We found a candidate C-class gene, AGAMOUS1 (XsAG1), through bovine serum albumin sequencing and genetics analysis with a Long Interpersed Nuclear Elements 1 (LINE1) transposable element fragment (Xsag1-LINE1-1) inserted into its second intron that caused a loss-of-C-function and therefore the double flower phenotype. In situ hybridization of XsAG1 and analysis of the expression levels of other ABC genes were used to identify differences between single- and double-flower development processes. These findings enrich our understanding of double flower formation in yellowhorn and provide evidence that transposon insertions into genes can reshape plant traits in forest trees.


Assuntos
Magnoliopsida , Sapindaceae , Fenótipo , Sapindaceae/genética , Magnoliopsida/genética , Elementos de DNA Transponíveis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas
6.
Front Plant Sci ; 13: 994154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204058

RESUMO

The AlkB homologs (ALKBH) gene family regulates N6-methyladenosine (m6A) RNA methylation and is involved in plant growth and the abiotic stress response. Poplar is an important model plant for studying perennial woody plants. Poplars typically have a long juvenile period of 7-10 years, requiring long periods of time for studies of flowering or mature wood properties. Consequently, functional studies of the ALKBH genes in Populus species have been limited. Based on AtALKBHs sequence similarity with Arabidopsis thaliana, 23 PagALKBHs were identified in the genome of the poplar 84K hybrid genotype (P. alba × P. tremula var. glandulosa), and gene structures and conserved domains were confirmed between homologs. The PagALKBH proteins were classified into six groups based on conserved sequence compared with human, Arabidopsis, maize, rice, wheat, tomato, barley, and grape. All homologs of PagALKBHs were tissue-specific; most were highly expressed in leaves. ALKBH9B and ALKBH10B are m6A demethylases and overexpression of their homologs PagALKBH9B and PagALKBH10B reduced m6A RNA methylation in transgenic lines. The number of adventitious roots and the biomass accumulation of transgenic lines decreased compared with WT. Therefore, PagALKBH9B and PagALKBH10B mediate m6A RNA demethylation and play a regulatory role in poplar growth and development. Overexpression of PagALKBH9B and PagALKBH10B can reduce the accumulation of H2O2 and oxidative damage by increasing the activities of SOD, POD, and CAT, and enhancing protection for Chl a/b, thereby increasing the salt tolerance of transgenic lines. However, overexpression lines were more sensitive to drought stress due to reduced proline content. This research revealed comprehensive information about the PagALKBH gene family and their roles in growth and development and responsing to salt stress of poplar.

7.
Plant Cell ; 34(9): 3364-3382, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35703939

RESUMO

Activity of the vascular cambium gives rise to secondary xylem for wood formation in trees. The transcription factor WUSCHEL-related HOMEOBOX4 (WOX4) is a central regulator downstream of the hormone and peptide signaling pathways that maintain cambial activity. However, the genetic regulatory network underlying WOX4-mediated wood formation at the post-transcriptional level remains to be elucidated. In this study, we identified the ubiquitin receptor PagDA1 in hybrid poplar (Populus alba × Populus glandulosa clone 84K) as a negative regulator of wood formation, which restricts cambial activity during secondary growth. Overexpression of PagDA1 in poplar resulted in a relatively reduced xylem due to decreased cambial cell division. By contrast, mutation of PagDA1 by CRISPR/Cas9 resulted in an increased cambial cell activity and promoted xylem formation. Genetic analysis demonstrated that PagDA1 functions antagonistically in a common pathway as PagWOX4 to regulate cambial activity. We propose that PagDA1 physically associates with PagWOX4 and modulates the degradation of PagWOX4 by the 26S proteasome. Moreover, genetic analysis revealed that PagDA1 exerts its negative effect on cambial development by modulating the stability of PagWOX4 in a ubiquitin-dependent manner mediated by the E3 ubiquitin ligase PagDA2. In sum, we have identified a cambial regulatory protein complex, PagDA1-PagWOX4, as a potential target for wood biomass improvement.


Assuntos
Câmbio , Populus , Redes Reguladoras de Genes , Fatores de Transcrição , Ubiquitinas , Madeira , Xilema
8.
Gigascience ; 112022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764602

RESUMO

BACKGROUND: Manchurian walnut (Juglans mandshurica Maxim.) is a tree with multiple industrial uses and medicinal properties in the Juglandaceae family (walnuts and hickories). J. mandshurica produces juglone, which is a toxic allelopathic agent and has potential utilization value. Furthermore, the seed of J. mandshurica is rich in various unsaturated fatty acids and has high nutritive value. FINDINGS: Here, we present a high-quality chromosome-scale reference genome assembly and annotation for J. mandshurica (n = 16) with a contig N50 of 21.4 Mb by combining PacBio high-fidelity reads with high-throughput chromosome conformation capture data. The assembled genome has an estimated sequence size of 548.7 Mb and consists of 657 contigs, 623 scaffolds, and 40,453 protein-coding genes. In total, 60.99% of the assembled genome consists of repetitive sequences. Sixteen super-scaffolds corresponding to the 16 chromosomes were assembled, with a scaffold N50 length of 33.7 Mb and a BUSCO complete gene percentage of 98.3%. J. mandshurica displays a close sequence relationship with Juglans cathayensis, with a divergence time of 13.8 million years ago. Combining the high-quality genome, transcriptome, and metabolomics data, we constructed a gene-to-metabolite network and identified 566 core and conserved differentially expressed genes, which may be involved in juglone biosynthesis. Five CYP450 genes were found that may contribute to juglone accumulation. NAC, bZip, NF-YA, and NF-YC are positively correlated with the juglone content. Some candidate regulators (e.g., FUS3, ABI3, LEC2, and WRI1 transcription factors) involved in the regulation of lipid biosynthesis were also identified. CONCLUSIONS: Our genomic data provide new insights into the evolution of the walnut genome and create a new platform for accelerating molecular breeding and improving the comprehensive utilization of these economically important tree species.


Assuntos
Juglans , Cromossomos , Genoma , Juglans/genética , Lipídeos , Naftoquinonas
9.
Front Microbiol ; 13: 870519, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602027

RESUMO

Bursaphelenchus xylophilus, a plant parasitic nematode, is the causal agent of pine wilt, a devastating forest tree disease. Essentially, no efficient methods for controlling B. xylophilus and pine wilt disease have yet been developed. Enterobacter ludwigii AA4, isolated from the root of maize, has powerful nematocidal activity against B. xylophilus in a new in vitro dye exclusion test. The corrected mortality of the B. xylophilus treated by E. ludwigii AA4 or its cell extract reached 98.3 and 98.6%, respectively. Morphological changes in B. xylophilus treated with a cell extract from strain AA4 suggested that the death of B. xylophilus might be caused by an increased number of vacuoles in non-apoptotic cell death and the damage to tissues of the nematodes. In a greenhouse test, the disease index of the seedlings of Scots pine (Pinus sylvestris) treated with the cells of strain AA4 plus B. xylophilus or those treated by AA4 cell extract plus B. xylophilus was 38.2 and 30.3, respectively, was significantly lower than 92.5 in the control plants treated with distilled water and B. xylophilus. We created a sdaB gene knockout in strain AA4 by deleting the gene that was putatively encoding the beta-subunit of L-serine dehydratase through Red homologous recombination. The nematocidal and disease-suppressing activities of the knockout strain were remarkably impaired. Finally, we revealed a robust colonization of P. sylvestris seedling needles by E. ludwigii AA4, which is supposed to contribute to the disease-controlling efficacy of strain AA4. Therefore, E. ludwigii AA4 has significant potential to serve as an agent for the biological control of pine wilt disease caused by B. xylophilus.

10.
Nat Plants ; 8(5): 500-512, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35534720

RESUMO

To date, little is known about the evolution of fern genomes, with only two small genomes published from the heterosporous Salviniales. Here we assembled the genome of Alsophila spinulosa, known as the flying spider-monkey tree fern, onto 69 pseudochromosomes. The remarkable preservation of synteny, despite resulting from an ancient whole-genome duplication over 100 million years ago, is unprecedented in plants and probably speaks to the uniqueness of tree ferns. Our detailed investigations into stem anatomy and lignin biosynthesis shed new light on the evolution of stem formation in tree ferns. We identified a phenolic compound, alsophilin, that is abundant in xylem, and we provided the molecular basis for its biosynthesis. Finally, analysis of demographic history revealed two genetic bottlenecks, resulting in rapid demographic declines of A. spinulosa. The A. spinulosa genome fills a crucial gap in the plant genomic landscape and helps elucidate many unique aspects of tree fern biology.


Assuntos
Atelinae , Gleiquênias , Aranhas , Animais , Atelinae/genética , Gleiquênias/genética , Genoma de Planta , Filogenia , Aranhas/genética
11.
Front Plant Sci ; 13: 850054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310631

RESUMO

Acer pseudosieboldianum (Pax) Komarov is an ornamental plant with prominent potential and is naturally distributed in Northeast China. Here, we obtained a chromosome-scale genome assembly of A. pseudosieboldianum combining HiFi and Hi-C data, and the final assembled genome size was 690.24 Mb and consisted of 287 contigs, with a contig N50 value of 5.7 Mb and a BUSCO complete gene percentage of 98.4%. Genome evolution analysis showed that an ancient duplication occurred in A. pseudosieboldianum. Phylogenetic analyses revealed that Aceraceae family could be incorporated into Sapindaceae, consistent with the present Angiosperm Phylogeny Group system. We further construct a gene-to-metabolite correlation network and identified key genes and metabolites that might be involved in anthocyanin biosynthesis pathways during leaf color change. Additionally, we identified crucial teosinte branched1, cycloidea, and proliferating cell factors (TCP) transcription factors that might be involved in leaf morphology regulation of A. pseudosieboldianum, Acer yangbiense and Acer truncatum. Overall, this reference genome is a valuable resource for evolutionary history studies of A. pseudosieboldianum and lays a fundamental foundation for its molecular breeding.

12.
Front Plant Sci ; 13: 795631, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222462

RESUMO

Pinus koraiensis, Pinus sibirica, and Pinus pumila are the major five-needle pines in northeast China, with substantial economic and ecological values. The phenotypic variation, environmental adaptability and evolutionary relationships of these three five-needle pines remain largely undecided. It is therefore important to study their genetic differentiation and evolutionary history. To obtain more genetic information, the needle transcriptomes of the three five-needle pines were sequenced and assembled. To explore the relationship of sequence information and adaptation to a high mountain environment, data on needle morphological traits [needle length (NL), needle width (NW), needle thickness (NT), and fascicle width (FW)] and 19 climatic variables describing the patterns and intensity of temperature and precipitation at six natural populations were recorded. Geographic coordinates of altitude, latitude, and longitude were also obtained. The needle morphological data was combined with transcriptome information, location, and climate data, for a comparative analysis of the three five-needle pines. We found significant differences for needle traits among the populations of the three five-needle pine species. Transcriptome analysis showed that the phenotypic variation and environmental adaptation of the needles of P. koraiensis, P. sibirica, and P. pumila were related to photosynthesis, respiration, and metabolites. Analysis of orthologs from 11 Pinus species indicated a closer genetic relationship between P. koraiensis and P. sibirica compared to P. pumila. Our study lays a foundation for genetic improvement of these five-needle pines and provides insights into the adaptation and evolution of Pinus species.

13.
Front Plant Sci ; 12: 727932, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691108

RESUMO

Co-enzyme A (CoA) ligation of hydroxycinnamic acids by 4-coumaric acid:CoA ligase (4CL) is a critical step in the biosynthesis of monolignols. Perturbation of 4CL activity significantly impacts the lignin content of diverse plant species. In Populus trichocarpa, two well-studied xylem-specific Ptr4CLs (Ptr4CL3 and Ptr4CL5) catalyze the CoA ligation of 4-coumaric acid to 4-coumaroyl-CoA and caffeic acid to caffeoyl-CoA. Subsequently, two 4-hydroxycinnamoyl-CoA:shikimic acid hydroxycinnamoyl transferases (PtrHCT1 and PtrHCT6) mediate the conversion of 4-coumaroyl-CoA to caffeoyl-CoA. Here, we show that the CoA ligation of 4-coumaric and caffeic acids is modulated by Ptr4CL/PtrHCT protein complexes. Downregulation of PtrHCTs reduced Ptr4CL activities in the stem-differentiating xylem (SDX) of transgenic P. trichocarpa. The Ptr4CL/PtrHCT interactions were then validated in vivo using biomolecular fluorescence complementation (BiFC) and protein pull-down assays in P. trichocarpa SDX extracts. Enzyme activity assays using recombinant proteins of Ptr4CL and PtrHCT showed elevated CoA ligation activity for Ptr4CL when supplemented with PtrHCT. Numerical analyses based on an evolutionary computation of the CoA ligation activity estimated the stoichiometry of the protein complex to consist of one Ptr4CL and two PtrHCTs, which was experimentally confirmed by chemical cross-linking using SDX plant protein extracts and recombinant proteins. Based on these results, we propose that Ptr4CL/PtrHCT complexes modulate the metabolic flux of CoA ligation for monolignol biosynthesis during wood formation in P. trichocarpa.

14.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34639038

RESUMO

Chokecherry (Padus virginiana L.) is an important landscaping tree with high ornamental value because of its colorful purplish-red leaves (PRL). The quantifications of anthocyanins and the mechanisms of leaf color change in this species remain unknown. The potential biosynthetic and regulatory mechanisms and the accumulation patterns of anthocyanins in P. virginiana that determine three leaf colors were investigated by combined analysis of the transcriptome and the metabolome. The difference of chlorophyll, carotenoid and anthocyanin content correlated with the formation of P. virginiana leaf color. Using enrichment and correlation network analysis, we found that anthocyanin accumulation differed in different colored leaves and that the accumulation of malvidin 3-O-glucoside (violet) and pelargonidin 3-O-glucoside (orange-red) significantly correlated with the leaf color change from green to purple-red. The flavonoid biosynthesis genes (PAL, CHS and CHI) and their transcriptional regulators (MYB, HD-Zip and bHLH) exhibited specific increased expression during the purple-red periods. Two genes encoding enzymes in the anthocyanin biosynthetic pathway, UDP glucose-flavonoid 3-O-glucosyl-transferase (UFGT) and anthocyanidin 3-O-glucosyltransferase (BZ1), seem to be critical for suppressing the formation of the aforesaid anthocyanins. In PRL, the expression of the genes encoding for UGFT and BZ1 enzymes was substantially higher than in leaves of other colors and may be related with the purple-red color change. These results may facilitate genetic modification or selection for further improvement in ornamental qualities of P. virginiana.


Assuntos
Antocianinas/biossíntese , Pigmentação , Folhas de Planta/metabolismo , Prunus/fisiologia , Vias Biossintéticas , Clorofila/biossíntese , Cor , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma , Metabolômica/métodos , Pigmentação/genética , Folhas de Planta/genética , Transcriptoma
16.
J Integr Plant Biol ; 63(11): 1906-1921, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34347368

RESUMO

High-throughput single-cell RNA sequencing (scRNA-seq) has advantages over traditional RNA-seq to explore spatiotemporal information on gene dynamic expressions in heterogenous tissues. We performed Drop-seq, a method for the dropwise sequestration of single cells for sequencing, on protoplasts from the differentiating xylem of Populus alba × Populus glandulosa. The scRNA-seq profiled 9,798 cells, which were grouped into 12 clusters. Through characterization of differentially expressed genes in each cluster and RNA in situ hybridizations, we identified vessel cells, fiber cells, ray parenchyma cells and xylem precursor cells. Diffusion pseudotime analyses revealed the differentiating trajectory of vessels, fiber cells and ray parenchyma cells and indicated a different differentiation process between vessels and fiber cells, and a similar differentiation process between fiber cells and ray parenchyma cells. We identified marker genes for each cell type (cluster) and key candidate regulators during developmental stages of xylem cell differentiation. Our study generates a high-resolution expression atlas of wood formation at the single cell level and provides valuable information on wood formation.


Assuntos
Populus/citologia , Xilema/citologia , Diferenciação Celular , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Genoma de Planta , Populus/genética , Populus/metabolismo , Análise de Sequência de RNA , Análise de Célula Única
17.
Front Plant Sci ; 12: 695223, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249068

RESUMO

Lignin is one of the major components of xylem cell walls in tree stems. The lignin in the wood of most flowering plants (dicotyledonous angiosperms) is typically polymerized from three monolignol precursors, coniferyl alcohol, sinapyl alcohol, and p-coumaroyl alcohol, resulting in guaiacyl (G), syringyl (S), and hydroxyphenyl (H) subunits, respectively. In this study, we focus on the transcriptional regulation of a coniferaldehyde 5-hydroxylase (CAld5H2) gene, which encodes a key enzyme for sinapyl alcohol biosynthesis. We carried out a yeast one-hybrid (Y1H) screen to identify candidate upstream transcription factors (TFs) regulating CAld5H2. We obtained 12 upstream TFs as potential regulators of CAld5H2. One of these TF genes, BLH6a, encodes a BEL1-like homeodomain (BLH) protein and negatively regulated the CAld5H2 promoter activity. The direct regulation of CAld5H2 promoter by BLH6a was supported by chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) and dominant repression of BLH6a in transgenic plants. Luciferase complementation imaging analyses showed extensive protein-protein interactions among these 12 TFs. We propose that BLH6a is a negative regulator of CAld5H2, which acts through combinatorial regulation of multiple TFs for sinapyl alcohol (S monolignol) biosynthesis in poplar.

18.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803587

RESUMO

Anthocyanins are natural water-soluble pigments that are important in plants because they endow a variety of colors to vegetative tissues and reproductive plant organs, mainly ranging from red to purple and blue. The colors regulated by anthocyanins give plants different visual effects through different biosynthetic pathways that provide pigmentation for flowers, fruits and seeds to attract pollinators and seed dispersers. The biosynthesis of anthocyanins is genetically determined by structural and regulatory genes. MYB (v-myb avian myeloblastosis viral oncogene homolog) proteins are important transcriptional regulators that play important roles in the regulation of plant secondary metabolism. MYB transcription factors (TFs) occupy a dominant position in the regulatory network of anthocyanin biosynthesis. The TF conserved binding motifs can be combined with other TFs to regulate the enrichment and sedimentation of anthocyanins. In this study, the regulation of anthocyanin biosynthetic mechanisms of MYB-TFs are discussed. The role of the environment in the control of the anthocyanin biosynthesis network is summarized, the complex formation of anthocyanins and the mechanism of environment-induced anthocyanin synthesis are analyzed. Some prospects for MYB-TF to modulate the comprehensive regulation of anthocyanins are put forward, to provide a more relevant basis for further research in this field, and to guide the directed genetic modification of anthocyanins for the improvement of crops for food quality, nutrition and human health.


Assuntos
Antocianinas/biossíntese , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Filogenia , Proteínas de Plantas/química , Fatores de Transcrição/química
19.
Comput Struct Biotechnol J ; 19: 168-182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33425249

RESUMO

Understanding the mechanisms behind lignin formation is an important research area with significant implications for the bioenergy and biomaterial industries. Computational models are indispensable tools for understanding this complex process. Models of the monolignol pathway in Populus trichocarpa and other plants have been developed to explore how transgenic modifications affect important bioenergy traits. Many of these models, however, only capture one level of biological organization and are unable to capture regulation across multiple biological scales. This limits their ability to predict how gene modification strategies will impact lignin and other wood properties. While the first multiscale model of lignin biosynthesis in P. trichocarpa spanned the transcript, protein, metabolic, and phenotypic layers, it did not account for cross-regulatory influences that could impact abundances of untargeted monolignol transcripts and proteins. Here, we present a multiscale model incorporating these cross-regulatory influences for predicting lignin and wood traits from transgenic knockdowns of the monolignol genes. The three main components of this multiscale model are (1) a transcript-protein model capturing cross-regulatory influences, (2) a kinetic-based metabolic model, and (3) random forest models relating the steady state metabolic fluxes to 25 physical traits. We demonstrate that including the cross-regulatory behavior results in smaller predictive error for 23 of the 25 traits. We use this multiscale model to explore the predicted impact of novel combinatorial knockdowns on key bioenergy traits, and identify the perturbation of PtrC3H3 and PtrCAld5H1&2 monolignol genes as a candidate strategy for increasing saccharification efficiencies while reducing negative impacts on wood density and height.

20.
Front Microbiol ; 11: 585404, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162962

RESUMO

Major losses of crop yield and quality caused by soil-borne plant diseases have long threatened the ecology and economy of agriculture and forestry. Biological control using beneficial microorganisms has become more popular for management of soil-borne pathogens as an environmentally friendly method for protecting plants. Two major barriers limiting the disease-suppressive functions of biocontrol microbes are inadequate colonization of hosts and inefficient inhibition of soil-borne pathogen growth, due to biotic and abiotic factors acting in complex rhizosphere environments. Use of a consortium of microbial strains with disease inhibitory activity may improve the biocontrol efficacy of the disease-inhibiting microbes. The mechanisms of biological control are not fully understood. In this review, we focus on bacterial and fungal biocontrol agents to summarize the current state of the use of single strain and multi-strain biological control consortia in the management of soil-borne diseases. We discuss potential mechanisms used by microbial components to improve the disease suppressing efficacy. We emphasize the interaction-related factors to be considered when constructing multiple-strain biological control consortia and propose a workflow for assembling them by applying a reductionist synthetic community approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...