RESUMO
Recent observations suggest that the large carbon sink in mature and recovering forests may be strongly limited by nitrogen1-3. Nitrogen-fixing trees (fixers) in symbiosis with bacteria provide the main natural source of new nitrogen to tropical forests3,4. However, abundances of fixers are tightly constrained5-7, highlighting the fundamental unanswered question of what limits new nitrogen entering tropical ecosystems. Here we examine whether herbivory by animals is responsible for limiting symbiotic nitrogen fixation in tropical forests. We evaluate whether nitrogen-fixing trees experience more herbivory than other trees, whether herbivory carries a substantial carbon cost, and whether high herbivory is a result of herbivores targeting the nitrogen-rich leaves of fixers8,9. We analysed 1,626 leaves from 350 seedlings of 43 tropical tree species in Panama and found that: (1) although herbivory reduces the growth and survival of all seedlings, nitrogen-fixing trees undergo 26% more herbivory than non-fixers; (2) fixers have 34% higher carbon opportunity costs owing to herbivory than non-fixers, exceeding the metabolic cost of fixing nitrogen; and (3) the high herbivory of fixers is not driven by high leaf nitrogen. Our findings reveal that herbivory may be sufficient to limit tropical symbiotic nitrogen fixation and could constrain its role in alleviating nitrogen limitation on the tropical carbon sink.
Assuntos
Florestas , Herbivoria , Fixação de Nitrogênio , Nitrogênio , Árvores , Clima Tropical , Animais , Carbono/metabolismo , Sequestro de Carbono , Nitrogênio/metabolismo , Panamá , Folhas de Planta , Plântula , Árvores/classificação , Árvores/metabolismoRESUMO
Plant interactions with other organisms are mediated by chemistry, yet chemistry varies among conspecific and within individual plants. The foliar metabolome-the suite of small-molecule metabolites found in the leaf-changes during leaf ontogeny and is influenced by the signaling molecule jasmonic acid. Species differences in secondary metabolites are thought to play an important ecological role by limiting the host ranges of herbivores and pathogens, and hence facilitating competitive coexistence among plant species in species-rich plant communities such as tropical forests. Yet it remains unclear how inducible and ontogenetic variation compare with interspecific variation, particularly in tropical trees. Here, we take advantage of novel methods to assemble mass spectra of all compounds in leaf extracts into molecular networks that quantify their chemical structural similarity in order to compare inducible and ontogenetic chemical variation to among-species variation in species-rich tropical tree genera. We ask (i) whether young and mature leaves differ chemically, (ii) whether jasmonic acid-inducible chemical variation differs between young and mature leaves, and (iii) whether interspecific exceeds intraspecific chemical variation for four species from four hyperdiverse tropical tree genera. We observed significant effects of the jasmonic acid treatment for three of eight combinations of species and ontogenetic stage evaluated. Three of the four species also exhibited large metabolomic differences with leaf ontogenetic stage. The profound effect of leaf ontogenetic stage on the foliar metabolome suggests a qualitative turnover in secondary chemistry with leaf ontogeny. We also quantified foliar metabolomes for 45 congeners of the four focal species. Chemical similarity was much greater within than between species for all four genera, even when within-species comparisons included leaves that differed in age and jasmonic acid treatment. Despite ontogenetic and inducible variation within species, chemical differences among congeneric species may be sufficient to partition niche space with respect to chemical defense.
RESUMO
Plant enemies that attack chemically similar host species are thought to mediate competitive exclusion of chemically similar plants and select for chemical divergence among closely related species. This hypothesis predicts that plant defenses should diverge rapidly, minimizing phylogenetic signal. To evaluate this prediction, we quantified metabolomic similarity for 203 tree species that represent >89% of all individuals in large forest plots in Maryland and Panama. We constructed molecular networks based on mass spectrometry of all 203 species, quantified metabolomic similarity for all pairwise combinations of species, and used phylogenetically independent contrasts to evaluate how pairwise metabolomic similarity varies phylogenetically. Leaf metabolomes exhibited clear phylogenetic signal for the temperate plot, which is inconsistent with the prediction. In contrast, leaf metabolomes lacked phylogenetic signal for the tropical plot, with particularly low metabolomic similarity among congeners. In addition, community-wide variation in metabolomes was much greater for the tropical community, with single tropical genera supporting greater metabolomic variation than the entire temperate community. Our results are consistent with the hypothesis that stronger plant-enemy interactions lead to more rapid divergence and greater metabolomic variation in tropical than temperate plants. Additional community-level foliar metabolomes will be required from tropical and temperate forests to evaluate this hypothesis.
Assuntos
Metabolômica , Clima Tropical , Panamá , Filogenia , Plantas/classificaçãoRESUMO
Contents 952 I. 952 II. 953 III. 955 IV. 956 V. 957 957 References 957 SUMMARY: Much of our understanding of the mechanisms by which biotic interactions shape plant communities has been constrained by the methods available to study the diverse secondary chemistry that defines plant relationships with other organisms. Recent innovations in analytical chemistry and bioinformatics promise to reveal the cryptic chemical traits that mediate plant ecology and evolution by facilitating simultaneous structural comparisons of hundreds of unknown molecules to each other and to libraries of known compounds. Here, I explore the potential for mass spectrometry and nuclear magnetic resonance metabolomics to enable unprecedented tests of seminal, but largely untested hypotheses that propose a fundamental role for plant chemical defenses against herbivores and pathogens in the evolutionary origins and ecological coexistence of plant species diversity.
Assuntos
Metabolômica , Filogenia , Plantas/química , Plantas/metabolismo , Especificidade da EspécieRESUMO
Specialist herbivores and pathogens could induce negative conspecific density dependence among their hosts and thereby contribute to the diversity of plant communities. A small number of hyperdiverse genera comprise a large portion of tree diversity in tropical forests. These closely related congeners are likely to share natural enemies. Diverse defenses could still allow congeners to partition niche space defined by natural enemies, but interspecific differences in defenses would have to exceed intraspecific variation in defenses. We ask whether interspecific variation in secondary chemistry exceeds intraspecific variation for species from four hyperdiverse tropical tree genera. We used novel methods to quantify chemical structural similarity for all compounds present in methanol extracts of leaf tissue. We sought to maximize intraspecific variation by selecting conspecific leaves from different ontogenetic stages (expanding immature vs. fully hardened mature), different light environments (deep understory shade vs. large forest gaps), and different seasons (dry vs. wet). Chemical structural similarity differed with ontogeny, light environment, and season, but interspecific differences including those among congeneric species were much larger. Our results suggest that species differences in secondary chemistry are large relative to within-species variation, perhaps sufficiently large to permit niche segregation among congeneric tree species based on chemical defenses.
Assuntos
Florestas , Folhas de Planta/química , Árvores/química , Herbivoria , Estações do Ano , Clima TropicalRESUMO
The Janzen-Connell hypothesis proposes that plant interactions with host-specific antagonists can impair the fitness of locally abundant species and thereby facilitate coexistence. However, insects and pathogens that associate with multiple hosts may mediate exclusion rather than coexistence. We employ a simulation model to examine the effect of enemy host breadth on plant species richness and defence community structure, and to assess expected diversity maintenance in example systems. Only models in which plant enemy similarity declines rapidly with defence similarity support greater species richness than models of neutral drift. In contrast, a wide range of enemy host breadths result in spatial dispersion of defence traits, at both landscape and local scales, indicating that enemy-mediated competition may increase defence-trait diversity without enhancing species richness. Nevertheless, insect and pathogen host associations in Panama and Papua New Guinea demonstrate a potential to enhance plant species richness and defence-trait diversity comparable to strictly specialised enemies.