Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 23(1): 35, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34950995

RESUMO

The focus of the present investigation was to develop amorphous glassy solutions (AGSs) of BCS Class II and IV drugs using sucrose acetate isobutyrate (SAIB). The drugs studied were rifaximin (RFX), dasatinib (DST), aripiprazole (APZ), dolutegravir (DLT), cyclosporine (CYS), itraconazole (ITZ), tacrolimus (TAC), sirolimus (SRL), aprepitant (APT), and carbamazepine (CBZ). AGSs were prepared by dissolving known quantity of the drug in the SAIB at 120 (TAC and APZ), 140 (CYS) or 150 oC (RFX, DST, DLT, ITZ, SRL, APT, and CBZ). They were characterized visually and by NIR, NIR hyperspectroscopy (NIR-H), and XRPD. Stability were determined by exposing open vials to 40 oC/75% RH for a week. AGSs behave like a glassy solid at room temperature and liquified above 60 oC. The solubility of APT, DLT, SRL, APZ, RFX, CBZ, TAC and CYS in SAIB was 0.4±0.0, 1.7±0.4, 1.9±0.0, 21.6±2.6, 36.4±0.9, 76.5±4.0, 115.1±2.3, and 239.0±12.6 mg/g, respectively. NIR, NIR-H, and XRPD data indicated the amorphous nature of the AGSs. Furthermore, AGSs were stable against devitrification on exposure to high temperature and humidity. In summary, SAIB can be employed to develop stable AGSs of poorly soluble drugs to increase dissolution, and oral bioavailability with the addition of hydrophilic excipients.


Assuntos
Excipientes , Itraconazol , Disponibilidade Biológica , Estabilidade de Medicamentos , Solubilidade , Difração de Raios X
2.
Int J Pharm ; 602: 120657, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33930489

RESUMO

This study aimed to improve the dissolution of the poorly soluble drug lopinavir (LPV) by preparing amorphous solid dispersions (ASDs) using solvent evaporation method. The ASD formulations were prepared with ternary mixtures of LPV, Eudragit® E100, and microcrystalline cellulose (MCC) at various weight ratios. The ASDs were subjected to solid-state characterization and in vitro drug dissolution testing. Chemometric models based on near infrared spectroscopy (NIR) and NIR-hyperspectroscopy (NIR-H) data were developed using the partial least squares (PLS) regression and externally validated to estimate the percent of the crystalline LPV in the ASD. Initially, the solid-state characterization data of ASDs showed transformation of the drug from crystalline to amorphous. Negligible fraction of crystalline LPV was present in the ASD (3%). Compared to pure LPV, ASDs showed faster and higher drug dissolution (<2% vs. 60.3-73.5%) in the first 15 min of testing. The ASD was stable against crystallization during stability testing at 40 °C/75% for a month. In conclusion, the prepared ASD was stable against devitrification and enhance the dissolution of LPV.


Assuntos
Preparações Farmacêuticas , Cristalização , Liberação Controlada de Fármacos , Lopinavir , Solubilidade
3.
Pharmaceuticals (Basel) ; 13(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076276

RESUMO

The focus of the present investigation was to develop a predictive dissolution model for tablets coated with blends of cellulose acetate butyrate (CAB) 171-15 and cellulose acetate phthalate (C-A-P) using the design of experiment and chemometric approaches. Diclofenac sodium was used as a model drug. Coating weight gain (X1, 5, 7.5 and 10%) and CAB 171-15 percentage (X2, 33.3, 50 and 66.7%) in the coating composition relative to C-A-P and were selected as independent variables by full factorial experimental design. The responses monitored were dissolution at 1 (Y1), 8 (Y2), and 24 (Y3) h. Statistically significant (p < 0.05) effects of X1 on Y1 and X2 on Y1, Y2, and Y3 were observed. The models showed a good correlation between actual and predicted values as indicated by the correlation coefficients of 0.964, 0.914, and 0.932 for Y1, Y2, and Y3, respectively. For the chemometric model development, the near infrared spectra of the coated tablets were collected, and partial least square regression (PLSR) was performed. PLSR also showed a good correlation between actual and model predicted values as indicated by correlation coefficients of 0.916, 0.964, and 0.974 for Y1, Y2, and Y3, respectively. Y1, Y2, and Y3 predicted values of the independent sample by both approaches were close to the actual values. In conclusion, it is possible to predict the dissolution of tablets coated with blends of cellulose esters by both approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA