Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 27(19): 3377-3391, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982567

RESUMO

Skeletal dysplasias are a clinically and genetically heterogeneous group of bone and cartilage disorders. A total of 436 skeletal dysplasias are listed in the 2015 revised version of the nosology and classification of genetic skeletal disorders, of which nearly 20% are still genetically and molecularly uncharacterized. We report the clinical and molecular characterization of a lethal skeletal dysplasia of the short-rib group caused by mutation of the mouse Fop gene. Fop encodes a centrosomal and centriolar satellite (CS) protein. We show that Fop mutation perturbs ciliogenesis in vivo and that this leads to the alteration of the Hedgehog signaling pathway. Fop mutation reduces CSs movements and affects pericentriolar material composition, which probably participates to the ciliogenesis defect. This study highlights the role of a centrosome and CSs protein producing phenotypes in mice that recapitulate a short rib-polydactyly syndrome when mutated.


Assuntos
Ciliopatias/genética , Proteínas Proto-Oncogênicas/genética , Síndrome de Costela Curta e Polidactilia/genética , Fatores de Transcrição/genética , Animais , Centríolos/genética , Centrossomo/metabolismo , Centrossomo/patologia , Cílios/genética , Cílios/patologia , Ciliopatias/fisiopatologia , Humanos , Camundongos , Mutação , Síndrome de Costela Curta e Polidactilia/fisiopatologia
2.
Biol Open ; 2(2): 238-50, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23430395

RESUMO

The generation of cellular microtubules is initiated at specific sites such as the centrosome and the Golgi apparatus that contain nucleation complexes rich in γ-tubulin. The microtubule growing plus-ends are stabilized by plus-end tracking proteins (+TIPs), mainly EB1 and associated proteins. Myomegalin was identified as a centrosome/Golgi protein associated with cyclic nucleotide phosphodiesterase. We show here that Myomegalin exists as several isoforms. We characterize two of them. One isoform, CM-MMG, harbors a conserved domain (CM1), recently described as a nucleation activator, and is related to a family of γ-tubulin binding proteins, which includes Drosophila centrosomin. It localizes at the centrosome and at the cis-Golgi in an AKAP450-dependent manner. It recruits γ-tubulin nucleating complexes and promotes microtubule nucleation. The second isoform, EB-MMG, is devoid of CM1 domain and has a unique N-terminus with potential EB1-binding sites. It localizes at the cis-Golgi and can localize to microtubule plus-ends. EB-MMG binds EB1 and affects its loading on microtubules and microtubule growth. Depletion of Myomegalin by small interfering RNA delays microtubule growth from the centrosome and Golgi apparatus, and decreases directional migration of RPE1 cells. In conclusion, the Myomegalin gene encodes different isoforms that regulate microtubules. At least two of these have different roles, demonstrating a previously unknown mechanism to control microtubules in vertebrate cells.

3.
J Cell Sci ; 123(Pt 14): 2391-401, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20551181

RESUMO

Cilia and flagella are evolutionary conserved organelles that generate fluid movement and locomotion, and play roles in chemosensation, mechanosensation and intracellular signalling. In complex organisms, cilia are highly diversified, which allows them to perform various functions; however, they retain a 9+0 or 9+2 microtubules structure connected to a basal body. Here, we describe FOR20 (FOP-related protein of 20 kDa), a previously uncharacterized and highly conserved protein that is required for normal formation of a primary cilium. FOR20 is found in PCM1-enriched pericentriolar satellites and centrosomes. FOR20 contains a Lis1-homology domain that promotes self-interaction and is required for its satellite localization. Inhibition of FOR20 expression in RPE1 cells decreases the percentage of ciliated cells and the length of the cilium on ciliated cells. It also modifies satellite distribution, as judged by PCM1 staining, and displaces PCM1 from a detergent-insoluble to a detergent-soluble fraction. The subcellular distribution of satellites is dependent on both microtubule integrity and molecular motor activities. Our results suggest that FOR20 could be involved in regulating the interaction of PCM1 satellites with microtubules and motors. The role of FOR20 in primary cilium formation could therefore be linked to its function in regulating pericentriolar satellites. A role for FOR20 at the basal body itself is also discussed.


Assuntos
Centrossomo/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cílios/metabolismo , Proteínas/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Autoantígenos/genética , Autoantígenos/imunologia , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Linhagem Celular Transformada , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/imunologia , Cílios/patologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Hibridomas , Microtúbulos/metabolismo , Microtúbulos/patologia , Filogenia , Engenharia de Proteínas , Proteínas/genética , RNA Interferente Pequeno/genética , Ratos , Epitélio Pigmentado da Retina/imunologia , Epitélio Pigmentado da Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...