Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Environ Sci Technol ; 58(20): 8792-8802, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38719742

RESUMO

Per- and polyfluoroalkyl substances (PFASs) from aqueous film forming foams (AFFFs) can hinder bioremediation of co-contaminants such as trichloroethene (TCE) and benzene, toluene, ethylbenzene, and xylene (BTEX). Anaerobic dechlorination can require bioaugmentation of Dehalococcoides, and for BTEX, oxygen is often sparged to stimulate in situ aerobic biodegradation. We tested PFAS inhibition to TCE and BTEX bioremediation by exposing an anaerobic TCE-dechlorinating coculture, an aerobic BTEX-degrading enrichment culture, and an anaerobic toluene-degrading enrichment culture to n-dimethyl perfluorohexane sulfonamido amine (AmPr-FHxSA), perfluorohexane sulfonamide (FHxSA), perfluorohexanesulfonic acid (PFHxS), or nonfluorinated surfactant sodium dodecyl sulfate (SDS). The anaerobic TCE-dechlorinating coculture was resistant to individual PFAS exposures but was inhibited by >1000× diluted AFFF. FHxSA and AmPr-FHxSA inhibited the aerobic BTEX-degrading enrichment. The anaerobic toluene-degrading enrichment was not inhibited by AFFF or individual PFASs. Increases in amino acids in the anaerobic TCE-dechlorinating coculture compared to the control indicated stress response, whereas the BTEX culture exhibited lower concentrations of all amino acids upon exposure to most surfactants (both fluorinated and nonfluorinated) compared to the control. These data suggest the main mechanisms of microbial toxicity are related to interactions with cell membrane synthesis as well as protein stress signaling.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos Aromáticos , Hidrocarbonetos Aromáticos/metabolismo , Tricloroetileno/metabolismo , Sulfonamidas/metabolismo
2.
Environ Sci Technol ; 58(1): 17-32, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38110187

RESUMO

In situ chemical oxidation (ISCO) using peroxydisulfate has become more popular in the remediation of soils and shallow groundwater contaminated with organic chemicals. Researchers have studied the chemistry of peroxydisulfate and the oxidative species produced upon its decomposition (i.e., sulfate radical and hydroxyl radical) for over five decades, describing reaction kinetics, mechanisms, and product formation in great detail. However, if this information is to be useful to practitioners seeking to optimize the use of peroxydisulfate in the remediation of hazardous waste sites, the relevant conditions of high oxidant concentrations and the presence of minerals and solutes that affect radical chain reactions must be considered. The objectives of this Review are to provide insights into the chemistry of peroxydisulfate-based ISCO that can enable more efficient operation of these systems and to identify research needed to improve understanding of system performance. By gaining a deeper understanding of the underlying chemistry of these complex systems, it may be possible to improve the design and operation of peroxydisulfate-based ISCO remediation systems.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Óxidos/química , Oxirredução , Oxidantes/química , Minerais/química , Solo/química , Poluentes Químicos da Água/análise , Água Subterrânea/química
3.
Water Res X ; 21: 100203, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38098886

RESUMO

Scarcity of freshwater for agriculture has led to increased utilization of treated wastewater (TWW), establishing it as a significant and reliable source of irrigation water. However, years of research indicate that if not managed adequately, TWW may deleteriously affect soil functioning and plant productivity, and pose a hazard to human and environmental health. This review leverages the experience of researchers, stakeholders, and policymakers from Israel, the United-States, and Europe to present a holistic, multidisciplinary perspective on maximizing the benefits from municipal TWW use for irrigation. We specifically draw on the extensive knowledge gained in Israel, a world leader in agricultural TWW implementation. The first two sections of the work set the foundation for understanding current challenges involved with the use of TWW, detailing known and emerging agronomic and environmental issues (such as salinity and phytotoxicity) and public health risks (such as contaminants of emerging concern and pathogens). The work then presents solutions to address these challenges, including technological and agronomic management-based solutions as well as source control policies. The concluding section presents suggestions for the path forward, emphasizing the importance of improving links between research and policy, and better outreach to the public and agricultural practitioners. We use this platform as a call for action, to form a global harmonized data system that will centralize scientific findings on agronomic, environmental and public health effects of TWW irrigation. Insights from such global collaboration will help to mitigate risks, and facilitate more sustainable use of TWW for food production in the future.

4.
Environ Sci Technol ; 57(47): 18391-18392, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38014486
5.
Environ Sci Process Impacts ; 25(12): 2181-2188, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37990920

RESUMO

Per- and polyfluoroalkyl substances (PFAS) exist in contaminated groundwater, surface water, soil, and sediments from use of aqueous film forming foams (AFFFs). Under these conditions PFAS exhibit unusual behavior due to their surfactant properties, namely, aggregation and surface activity. Environmental factors such as salinity can affect these properties, and complicate efforts to monitor PFAS. The effect of high salinity matrices on the critical micelle concentration (CMC) of a AFFF formulation manufactured by 3M and the surface accumulation of PFAS was assessed with surface tension isotherm measurements and bench-scale experiments quantifying PFAS at the air-water interface. Conditions typical of brackish and saline waters substantially depressed the CMC of the AFFF by over 50% and increased the interfacial mass accumulation of PFAS in the AFFF mixture by up to a factor of 3, relative to values measured in ultrapure water. These results indicate that high salinity matrices increase the aggregation and surface activity of PFAS in mixtures, which are key properties affecting their transport.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Adsorção , Salinidade , Poluentes Químicos da Água/análise , Fluorocarbonos/análise
6.
Environ Sci Technol ; 57(43): 16616-16627, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37856881

RESUMO

Subsurface treatment systems, such as constructed wetlands, riverbank filtration systems, and managed aquifer recharge systems, offer a low-cost means of removing trace organic contaminants from treated municipal wastewater. To assess the processes through which trace organic contaminants are removed in subsurface treatment systems, pharmaceuticals and several major metabolites were measured in porewater, sediment, and plants within a horizontal levee (i.e., a subsurface flow wetland that receives treated municipal wastewater). Concentrations of trace organic contaminants in each wetland compartment rapidly declined along the flow path. Mass balance calculations, analysis of transformation products, microcosm experiments, and one-dimensional transport modeling demonstrated that more than 60% of the contaminant removal could be attributed to transformation. Monitoring of the system with and without nitrate in the wetland inflow indicated that relatively biodegradable trace organic contaminants, such as acyclovir and metoprolol, were rapidly transformed under both operating conditions. Trace organic contaminants that are normally persistent in biological treatment systems (e.g., sulfamethoxazole and carbamazepine) were removed only when Fe(III)- and sulfate-reducing conditions were observed. Minor structural modifications to trace organic contaminants (e.g., hydroxylation) altered the pathways and extents of trace organic contaminant transformation under different redox conditions. These findings indicate that subsurface treatment systems can be designed to remove both labile and persistent trace organic contaminants via transformation if they are designed and operated in a manner that results in sulfate-and Fe(III)-reducing conditions.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Compostos Férricos , Sulfatos/análise , Purificação da Água/métodos , Compostos Orgânicos/análise , Poluentes Químicos da Água/análise , Áreas Alagadas , Eliminação de Resíduos Líquidos/métodos
7.
Environ Sci Technol ; 57(36): 13691-13698, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37640476

RESUMO

Fully halogenated compounds are difficult to remediate by in situ chemical oxidation (ISCO) because carbon-halogen bonds react very slowly with the species that typically initiate contaminant transformation: sulfate radical (SO4•-) and hydroxyl radical (•OH). To enable the remediation of this class of contaminants by persulfate (S2O82-)-based ISCO, we employed a two-phase process to dehalogenate and oxidize a representative halogenated compound (i.e., hexachloroethane). In the first phase, a relatively high concentration of ethanol (1.8 M) was added, along with concentrations of S2O82- that are typically used for ISCO (i.e., 450 mM). Hexachloroethane underwent rapid dehalogenation when carbon-centered radicals produced by the reaction of ethanol and radicals formed during S2O82- decomposition reacted with carbon-halogen bonds. Unlike conventional ISCO treatment, hexachloroethane transformation and S2O82- decomposition took place on the time scale of days without external heating or base addition. The presence of O2, Cl-, and NO3- delayed the onset of hexachloroethane transformation when low concentrations of S2O82- (10 mM) were used, but these solutes had negligible effects when S2O82- was present at concentrations typical of in situ remediation (450 mM). The second phase of the reaction was initiated after most of the ethanol had been depleted when thermolytic S2O82- decomposition resulted in production of SO4•- that oxidized the partially dehalogenated transformation products. With proper precautions, S2O82--based ISCO with ethanol could be a useful remediation technology for sites contaminated with fully halogenated compounds.


Assuntos
Hidrocarbonetos Clorados , Racepinefrina , Compostos Orgânicos , Carbono , Etanol , Halogênios
8.
Environ Sci Technol Lett ; 10(4): 337-342, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37064824

RESUMO

Fungi and laccase mediator systems (LMSs) have a proven track record of oxidizing recalcitrant organic compounds. There has been considerable interest in applying LMSs to the treatment of perfluoroalkyl acids (PFAAs), a class of ubiquitous and persistent environmental contaminants. Some laboratory experiments have indicated modest losses of PFAAs over extended periods, but there have been no clear demonstrations of a transformation mechanism or the kinetics that would be needed for remediation applications. We set out to determine if this was a question of identifying and optimizing a rate-limiting step but discovered that observed losses of PFAAs were experimental artifacts. While unable to replicate the oxidation of PFAAs, we show that interactions of the PFAA compounds with laccase and laccase mediator mixtures could cause an artifact that mimics transformation (≲60%) of PFAAs. Furthermore, we employed a surrogate compound, carbamazepine (CBZ), and electron paramagnetic resonance spectroscopy to probe the formation of the radical species that had been proposed to be responsible for contaminant oxidation. We confirmed that under conditions where sufficient radical concentrations were produced to oxidize CBZ, no PFAA removal took place.

9.
ACS Sustain Chem Eng ; 11(12): 4800-4812, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37008181

RESUMO

Several billion metric tons per year of durable carbon dioxide removal (CDR) will be needed by mid-century to prevent catastrophic climate warming, and many new approaches must be rapidly scaled to ensure this target is met. Geologically permanent sequestration of carbon dioxide (CO2) in carbonate minerals-carbon mineralization-requires two moles of alkalinity and one mole of a CO2-reactive metal such as calcium or magnesium per mole of CO2 captured. Chemical weathering of geological materials can supply both ingredients, but weathering reactions must be accelerated to achieve targets for durable CDR. Here, a scalable CDR and mineralization process is reported in which water electrolysis is used to produce sulfuric acid for accelerated weathering, while a base is used to permanently sequester CO2 from air into carbonate minerals. The process can be integrated into existing extractive processes by reacting produced sulfuric acid with critical element feedstocks that neutralize acidity (e.g., rock phosphorus or ultramafic rock mine tailings), with calcium- and magnesium-bearing sulfate wastes electrolytically upcycled. The highest reported efficiency of electrolytic sulfuric acid production is achieved by maintaining catholyte feed conditions that minimize Faradaic losses by hydroxide permeation of the membrane-separated electrochemical cell. The industrial implementation of this process provides a pathway to gigaton-scale CO2 removal and sequestration during the production of critical elements needed for decarbonizing global energy infrastructure and feeding the world.

10.
Environ Sci Technol ; 57(18): 7240-7253, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37099683

RESUMO

Ammonia monooxygenase and analogous oxygenase enzymes contribute to pharmaceutical biotransformation in activated sludge. In this study, we hypothesized that methane monooxygenase can enhance pharmaceutical biotransformation within the benthic, diffuse periphytic sediments (i.e., "biomat") of a shallow, open-water constructed wetland. To test this hypothesis, we combined field-scale metatranscriptomics, porewater geochemistry, and methane gas fluxes to inform microcosms targeting methane monooxygenase activity and its potential role in pharmaceutical biotransformation. In the field, sulfamethoxazole concentrations decreased within surficial biomat layers where genes encoding for the particulate methane monooxygenase (pMMO) were transcribed by a novel methanotroph classified as Methylotetracoccus. Inhibition microcosms provided independent confirmation that methane oxidation was mediated by the pMMO. In these same incubations, sulfamethoxazole biotransformation was stimulated proportional to aerobic methane-oxidizing activity and exhibited negligible removal in the absence of methane, in the presence of methane and pMMO inhibitors, and under anoxia. Nitrate reduction was similarly enhanced under aerobic methane-oxidizing conditions with rates several times faster than for canonical denitrification. Collectively, our results provide convergent in situ and laboratory evidence that methane-oxidizing activity can enhance sulfamethoxazole biotransformation, with possible implications for the combined removal of nitrogen and trace organic contaminants in wetland sediments.


Assuntos
Metano , Áreas Alagadas , Oxirredução , Minerais , Biotransformação
11.
Environ Sci Technol ; 57(47): 18680-18689, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926844

RESUMO

Low-cost stainless-steel electrodes can activate hydrogen peroxide (H2O2) by converting it into a hydroxyl radical (•OH) and other reactive oxidants. At an applied potential of +0.020 V, the stainless-steel electrode produced •OH with a yield that was over an order of magnitude higher than that reported for other systems that employ iron oxides as catalysts under circumneutral pH conditions. Decreasing the applied potential at pH 8 and 9 enhanced the rate of H2O2 loss by shifting the process to a reaction mechanism that resulted in the formation of an Fe(IV) species. Significant metal leaching was only observed under acidic pH conditions (i.e., at pH <6), with the release of dissolved Fe and Cr occurring as the thickness of the passivation layer decreased. Despite the relatively high yield of •OH production under circumneutral pH conditions, most of the oxidants were scavenged by the electrode surface when contaminant concentrations comparable to those expected in drinking water sources were tested. The stainless-steel electrode efficiently removed trace organic contaminants from an authentic surface water sample without contaminating the water with Fe and Cr. With further development, stainless-steel electrodes could provide a cost-effective alternative to other H2O2 activation processes, such as those by ultraviolet light.


Assuntos
Oxidantes , Poluentes Químicos da Água , Peróxido de Hidrogênio , Aço Inoxidável , Oxirredução , Eletrodos , Água
12.
Environ Sci Technol ; 56(22): 15478-15488, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36257682

RESUMO

Sites impacted by aqueous film-forming foam (AFFF) contain co-contaminants that can stimulate biotransformation of polyfluoroalkyl substances. Here, we compare how microbial enrichments from AFFF-impacted soil amended with diethyl glycol monobutyl ether (found in AFFF), aromatic hydrocarbons (present in co-released fuels), acetate, and methane (substrates used or formed during bioremediation) impact the aerobic biotransformation of an AFFF-derived six-carbon electrochemical fluorination (ECF) precursor N-dimethyl ammonio propyl perfluorohexane sulfonamide (AmPr-FHxSA). We found that methane- and acetate-oxidizing cultures resulted in the highest yields of identifiable products (38 and 30%, respectively), including perfluorohexane sulfonamide (FHxSA) and perfluorohexane sulfonic acid (PFHxS). Using these data, we propose and detail a transformation pathway. Additionally, we examined chemical oxidation products of AmPr-FHxSA and FHxSA to provide insights on remediation strategies for AmPr-FHxSA. We demonstrate mineralization of these compounds using the sulfate radical and test their transformation during the total oxidizable precursor (TOP) assay. While perfluorohexanoic acid accounted for over 95% of the products formed, we demonstrate here for the first time two ECF-based precursors, AmPr-FHxSA and FHxSA, that produce PFHxS during the TOP assay. These findings have implications for monitoring poly- and perfluoroalkyl substances during site remediation and application of the TOP assay at sites impacted by ECF-based precursors.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Carbono , Poluentes Químicos da Água/análise , Água , Sulfanilamida , Sulfonamidas , Metano
13.
Water Res ; 226: 119246, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288663

RESUMO

Stormwater runoff capture and groundwater recharge can provide a sustainable means of augmenting the local water resources in water-stressed cities while simultaneously mitigating flood risk, provided that these processes do not compromise groundwater quality. We developed and tested for one year an innovative pilot-scale stormwater treatment train that employs cost-effective engineered geomedia in a continuous-flow unit-process system to remove contaminants from urban runoff during aquifer recharge. The system consisted of an iron-enhanced sand filter for phosphate removal, a woodchip bioreactor for nitrate removal coupled to an aeration step, and columns packed with different configurations of biochar- and manganese oxide-containing sand to remove trace metals and persistent, mobile, and toxic trace organic contaminants. During conditioning with authentic stormwater runoff over an extended period (8 months), the woodchip bioreactor removed 98% of the influent nitrate (9 g-N m-3 d-1), while phosphate broke through the iron-enhanced sand filter. During the challenge test (4 months), geomedia removed more than 80% of the mass of metals and trace organic compounds. Column hydraulic performance was stable during the entire study, and the weathered biochar and manganese oxide were effective at removing trace organic contaminants and metals, respectively. Under conditions likely encountered in the field, sustained nutrient removal is probable, but polar organic compounds such as 2,4-D could breakthrough after about a decade for conditions at the study site.


Assuntos
Purificação da Água , Chuva , Nitratos , Abastecimento de Água , Metais , Compostos Orgânicos , Organofosfatos , Fosfatos , Ferro
14.
Environ Sci Technol ; 56(20): 14462-14477, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36197061

RESUMO

In shallow, open-water engineered wetlands, design parameters select for a photosynthetic microbial biomat capable of robust pharmaceutical biotransformation, yet the contributions of specific microbial processes remain unclear. Here, we combined genome-resolved metatranscriptomics and oxygen profiling of a field-scale biomat to inform laboratory inhibition microcosms amended with a suite of pharmaceuticals. Our analyses revealed a dynamic surficial layer harboring oxic-anoxic cycling and simultaneous photosynthetic, nitrifying, and denitrifying microbial transcription spanning nine bacterial phyla, with unbinned eukaryotic scaffolds suggesting a dominance of diatoms. In the laboratory, photosynthesis, nitrification, and denitrification were broadly decoupled by incubating oxic and anoxic microcosms in the presence and absence of light and nitrogen cycling enzyme inhibitors. Through combining microcosm inhibition data with field-scale metagenomics, we inferred microbial clades responsible for biotransformation associated with membrane-bound nitrate reductase activity (emtricitabine, trimethoprim, and atenolol), nitrous oxide reduction (trimethoprim), ammonium oxidation (trimethoprim and emtricitabine), and photosynthesis (metoprolol). Monitoring of transformation products of atenolol and emtricitabine confirmed that inhibition was specific to biotransformation and highlighted the value of oscillating redox environments for the further transformation of atenolol acid. Our findings shed light on microbial processes contributing to pharmaceutical biotransformation in open-water wetlands with implications for similar nature-based treatment systems.


Assuntos
Compostos de Amônio , Áreas Alagadas , Atenolol , Biotransformação , Desnitrificação , Emtricitabina/metabolismo , Metoprolol , Nitrato Redutases/metabolismo , Nitrificação , Nitrogênio/metabolismo , Óxido Nitroso , Oxigênio , Preparações Farmacêuticas , Fotossíntese , Trimetoprima , Água
15.
Environ Sci Technol ; 56(15): 10646-10655, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35861429

RESUMO

Despite the prevalence of nitrate reduction in groundwater, the biotransformation of per- and polyfluoroalkyl substances (PFAS) under nitrate-reducing conditions remains mostly unknown compared with aerobic or strong reducing conditions. We constructed microcosms under nitrate-reducing conditions to simulate the biotransformation occurring at groundwater sites impacted by aqueous film-forming foams (AFFFs). We investigated the biotransformation of 6:2 fluorotelomer thioether amido sulfonate (6:2 FtTAoS), a principal PFAS constituent of several AFFF formulations using both quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) and qualitative high-resolution mass spectrometry analyses. Our results reveal that the biotransformation rates of 6:2 FtTAoS under nitrate-reducing conditions were about 10 times slower than under aerobic conditions, but about 2.7 times faster than under sulfate-reducing conditions. Although minimal production of 6:2 fluorotelomer sulfonate and the terminal perfluoroalkyl carboxylate, perfluorohexanoate was observed, fluorotelomer thioether and sulfinyl compounds were identified in the aqueous samples. Evidence for the formation of volatile PFAS was obtained by mass balance analysis using the total oxidizable precursor assay and detection of 6:2 fluorotelomer thiol by gas chromatography-mass spectrometry. Our results underscore the complexity of PFAS biotransformation and the interactions between redox conditions and microbial biotransformation activities, contributing to the better elucidation of PFAS environmental fate and impact.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Alcanossulfonatos , Biotransformação , Cromatografia Líquida , Fluorocarbonos/análise , Nitratos/análise , Sulfetos , Espectrometria de Massas em Tandem , Água , Poluentes Químicos da Água/análise
16.
Water Res ; 218: 118408, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35462258

RESUMO

Water systems need to become more locally robust and sustainable in view of increased population demands and supply uncertainties. Decentralized treatment is often assumed to have the potential to improve the technical, environmental, and economic performance of current technologies. The techno-economic feasibility of implementing independent building-scale decentralized systems combining rainwater harvesting, potable water production, and wastewater treatment and recycling was assessed for six main types of buildings ranging from single-family dwellings to high-rise buildings. Five different treatment layouts were evaluated under five different climatic conditions for each type of building. The layouts considered varying levels of source separation (i.e., black, grey, yellow, brown, and combined wastewater) using the corresponding toilet types (vacuum, urine-diverting, and conventional) and the appropriate pipes and pumping requirements. Our results indicate that the proposed layouts could satisfy 100% of the water demand for the three smallest buildings in all but the aridest climate conditions. For the three larger buildings, rainwater would offset annual water needs by approximately 74 to 100%. A comprehensive economic analysis considering CapEx and OpEx indicated that the cost of installing on-site water harvesting and recycling systems would increase the overall construction cost of multi-family buildings by around 6% and single-family dwellings by about 12%, with relatively low space requirements. For buildings or combined water systems with more than 300 people, the estimated total price of on-site water provision (including harvesting, treatment, recycling, and monitoring) ranged from $1.5/m3 to $2.7/m,3 which is considerably less than the typical tariffs collected by utilities in the United States and Western Europe. Where buildings can avoid the need to connect to centralized supplies for potable water and sewage disposal, water costs could be even lower. Urine-diversion has the potential to yield the least expensive solution but is the least well developed and had higher uncertainty in the cost analysis. More mature layouts (e.g., membrane bioreactors) exhibited less cost uncertainty and were economically competitive. Our analysis indicates that existing technologies can be used to create economically viable systems that greatly reduce demands on centralized utilities and, under some conditions, eliminate the need for centralized water supply or sewage collection.


Assuntos
Água Potável , Águas Residuárias , Humanos , Política , Esgotos , Abastecimento de Água
17.
Environ Sci Process Impacts ; 24(3): 439-446, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35113105

RESUMO

Aqueous film-forming foams (AFFFs) are important sources of per- and polyfluoroalkyl substances (PFASs) in soil, groundwater, and surface water. Soil microorganisms can convert polyfluorinated substances into persistent perfluoroalkyl acids, but the understanding of co-contaminant stimulation or inhibition of PFASs biotransformation is limited. In this study, we investigate how aerobic biotransformation of polyfluorinated substances was affected by common AFFF co-contaminants, such as gasoline aromatics: benzene, toluene, ethylbenzene, and o-xylene (BTEX). We performed aerobic microcosm studies by inoculating AFFF-impacted soil with medium containing 6:2 fluorotelomer thioether amido sulfonate (FtTAoS) and either diethyl glycol monobutyl ether (DGBE), a common AFFF ingredient, or BTEX compounds as the main carbon and energy source. BTEX-amended microcosms produced 4.3-5.3 fold more perfluoroalkyl carboxylates (PFCAs) than DGBE-amended ones, even though both organic carbon sources induced similar 6:2 FtTAoS biotransformation rates. In enrichments of AFFF-impacted solids selecting for BTEX biodegradation, we detected the presence of genes encoding toluene dioxygenase as well as larger abundances of transformation products from thioether oxidation that complement larger quantities of terminal transformation products. Our findings indicate that enrichment of BTEX-degrading microorganisms in the AFFF-impacted soil enhanced the conversion of 6:2 FtTAoS to PFCAs. These results provide insights into the high ratio of PFAAs to precursors at AFFF-impacted sites with history of BTEX bioremediation.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Biodegradação Ambiental , Biotransformação , Ácidos Carboxílicos , Fluorocarbonos/análise , Sulfetos , Tensoativos , Poluentes Químicos da Água/análise
18.
Environ Sci Technol ; 56(4): 2770-2782, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35077168

RESUMO

Horizontal levees are a nature-based approach for removing nitrogen from municipal wastewater effluent while simultaneously providing additional benefits, such as flood control. To assess nitrogen removal mechanisms and the efficacy of a horizontal levee, we monitored an experimental system receiving nitrified municipal wastewater effluent for 2 years. Based on mass balances and microbial gene abundance data, we determined that much of the applied nitrogen was most likely removed by heterotrophic denitrifiers that consumed labile organic carbon from decaying plants and added wood chips. Fe(III) and sulfate reduction driven by decay of labile organic carbon also produced Fe(II) sulfide minerals. During winter months, when heterotrophic activity was lower, strong correlations between sulfate release and nitrogen removal suggested that autotrophic denitrifiers oxidized Fe(II) sulfides using nitrate as an electron acceptor. These trends were seasonal, with Fe(II) sulfide minerals formed during summer fueling denitrification during the subsequent winter. Overall, around 30% of gaseous nitrogen losses in the winter were attributable to autotrophic denitrifiers. To predict long-term nitrogen removal, we developed an electron-transfer model that accounted for the production and consumption of electron donors. The model indicated that the labile organic carbon released from wood chips may be capable of supporting nitrogen removal from wastewater effluent for several decades with sulfide minerals, decaying vegetation, and root exudates likely sustaining nitrogen removal over a longer timescale.


Assuntos
Nitratos , Nitrogênio , Processos Autotróficos , Reatores Biológicos , Carbono , Desnitrificação , Compostos Férricos , Compostos Ferrosos , Minerais , Óxidos de Nitrogênio , Estações do Ano , Sulfatos , Sulfetos , Águas Residuárias
19.
ACS ES T Eng ; 2(10): 1933-1941, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37064786

RESUMO

Due to the challenges of providing centralized drinking water infrastructure in low-income and rural settings, point-of-use (POU) disinfection systems are an attractive option for enhancing access to safe drinking water. Electrochlorinators offer an easily scalable and adaptable alternative to POU disinfection systems that require frequent replenishment and accurate dosing of chlorine, but they also require addition of salts on a regular basis. To address this need, we developed an electrochemical disinfection system that efficiently produces chlorine without any chemical inputs. To convert the low concentration of chloride in source waters (i.e., 10-200 mg L-1) to free chlorine (i.e., HOCl/OCl-), an anion exchange membrane was positioned between two electrodes, creating two separate chambers. By providing continuous water flow through the catholyte while operating the anolyte in the batch mode, chloride was concentrated into the anolyte, where it was more efficiently converted into chlorine. This approach allowed us to produce chlorine at rates that were about 50% faster than that of an undivided cell operating under similar conditions. Chlorate production was approximately 20% slower in the separated cell compared to an undivided cell; concentrations in finished water never exceeded the World Health Organization's provisional guideline value of 0.7 mg L-1. The performance of the system was further improved by retaining some of the anolyte between operating cycles. This helped avoid periods of high cell potential before salts were concentrated in the anolyte chamber. Use of an anion exchange membrane and a recycled anolyte mode of operation reduced energy consumption by 30%-70% relative to an undivided cell. The energy required to disinfect water ranged from approximately 0.05 to 1 kWh m-3, depending on the chloride content and conductivity of the source water.

20.
Water Res X ; 13: 100127, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34927040

RESUMO

Recharge of urban stormwater has often been limited by the high cost of land and concerns about contamination of groundwater. To provide a possible solution, we developed an electrochemical advanced oxidation system (UV/H2O2) that is compatible with high-capacity stormwater recharge systems (e.g., drywells). The system employed an air-diffusion cathode to generate a H2O2 stock solution (i.e., typically around 600 mM) prior to the storm event. The H2O2 stock solution was then metered into stormwater and converted into hydroxyl radical (•OH) by an ultraviolet lamp. The energy consumption for H2O2 generation was optimized by adjusting the applied current density and adding an inert salt (e.g., Na2SO4) to stormwater. H2O2 in the stock solution was unstable. By mixing the basic H2O2 containing catholyte and the acidic anolyte, the stability increased, enabling generation of the H2O2 stock solution up to three days prior the storm event with loss of less than 20% of the H2O2. Lab-scale experiments and a kinetic model were used to assess the feasibility of the full-scale advanced oxidation system. System performance decreased at elevated concentrations of dissolved organic carbon in stormwater, due to enhanced light reflection and backscattering at the water-air interface in the UV reactor, competition for UV light absorption with H2O2 and the tendency of organic matter to act as a •OH scavenger. The proposed system can be incorporated into drywells to remove greater than 90% of trace organic contaminants under typical operating conditions. The electrical energy per order of the system is estimated to range from 0.5 to 2 kWh/m3, depending on the dissolved organic carbon concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...