Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39071440

RESUMO

Phase separation forms membraneless compartments in the nuclei, including by establishing heterochromatin "domains" and repair foci. Pericentromeric heterochromatin mostly comprises repeated sequences prone to aberrant recombination, and "safe" homologous recombination (HR) repair of these sequences requires the movement of repair sites to the nuclear periphery before Rad51 recruitment and strand invasion. How this mobilization initiates is unknown, and the contribution of phase separation to these dynamics is unclear. Here, we show that Nup98 nucleoporin is recruited to heterochromatic repair sites before relocalization through Sec13 or Nup88 nucleoporins, and downstream from the Smc5/6 complex and SUMOylation. Remarkably, the phase separation properties of Nup98 are required and sufficient to mobilize repair sites and exclude Rad51, thus preventing aberrant recombination while promoting HR repair. Disrupting this pathway results in heterochromatin repair defects and widespread chromosome rearrangements, revealing a novel "off-pore" role for nucleoporins and phase separation in nuclear dynamics and genome integrity in a multicellular eukaryote.

2.
Methods Mol Biol ; 2153: 459-482, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32840799

RESUMO

Pericentromeric heterochromatin is mostly composed of repeated DNA sequences, which are prone to aberrant recombination during double-strand break (DSB) repair. Studies in Drosophila and mouse cells revealed that 'safe' homologous recombination (HR) repair of these sequences relies on the relocalization of repair sites to outside the heterochromatin domain before Rad51 recruitment. Relocalization requires a striking network of nuclear actin filaments (F-actin) and myosins that drive directed motions. Understanding this pathway requires the detection of nuclear actin filaments that are significantly less abundant than those in the cytoplasm, and the imaging and tracking of repair sites for long time periods. Here, we describe an optimized protocol for live cell imaging of nuclear F-actin in Drosophila cells, and for repair focus tracking in mouse cells, including: imaging setup, image processing approaches, and analysis methods. We emphasize approaches that can be applied to identify the most effective fluorescent markers for live cell imaging, strategies to minimize photobleaching and phototoxicity with a DeltaVision deconvolution microscope, and image processing and analysis methods using SoftWoRx and Imaris software. These approaches enable a deeper understanding of the spatial and temporal dynamics of heterochromatin repair and have broad applicability in the fields of nuclear architecture, nuclear dynamics, and DNA repair.


Assuntos
Citoesqueleto de Actina/metabolismo , Heterocromatina/genética , Imagem Molecular/métodos , Reparo de DNA por Recombinação , Animais , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Drosophila , Heterocromatina/metabolismo , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Rad51 Recombinase/metabolismo , Software
3.
Mol Biol Cell ; 30(22): 2771-2789, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31509480

RESUMO

Budding yeast treated with hydroxyurea (HU) activate the S phase checkpoint kinase Rad53, which prevents DNA replication forks from undergoing aberrant structural transitions and nuclease processing. Rad53 is also required to prevent premature extension of the mitotic spindle that assembles during a HU-extended S phase. Here we present evidence that checkpoint restraint of spindle extension is directly coupled to Rad53 control of replication fork stability. In budding yeast, centromeres are flanked by replication origins that fire in early S phase. Mutations affecting the Zn2+-finger of Dbf4, an origin activator, preferentially reduce centromere-proximal origin firing in HU, corresponding with suppression of rad53 spindle extension. Inactivating Exo1 nuclease or displacing centromeres from origins provides a similar suppression. Conversely, short-circuiting Rad53 targeting of Dbf4, Sld3, and Dun1, substrates contributing to fork stability, induces spindle extension. These results reveal spindle extension in HU-treated rad53 mutants is a consequence of replication fork catastrophes at centromeres. When such catastrophes occur, centromeres become susceptible to nucleases, disrupting kinetochore function and spindle force balancing mechanisms. At the same time, our data indicate centromere duplication is not required to stabilize S phase spindle structure, leading us to propose a model for how monopolar kinetochore-spindle attachments may contribute to spindle force balance in HU.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Replicação do DNA/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Centrômero/genética , Centrômero/metabolismo , Quinase do Ponto de Checagem 2/genética , Segregação de Cromossomos/efeitos dos fármacos , Estruturas Cromossômicas/metabolismo , Dano ao DNA/genética , Replicação do DNA/genética , DNA Fúngico/genética , Cinetocoros/metabolismo , Origem de Replicação , Fase S/fisiologia , Pontos de Checagem da Fase S do Ciclo Celular/genética , Pontos de Checagem da Fase S do Ciclo Celular/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA