Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(16): 16080-16088, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37523736

RESUMO

Epitaxially grown self-assembled semiconductor quantum dots (QDs) with atom-like optical properties have emerged as the best choice for single-photon sources required for the development of quantum technology and quantum networks. Nondestructive selection of a single QD having desired structural, compositional, and optical characteristics is essential to obtain noise-free, fully indistinguishable single or entangled photons from single-photon emitters. Here, we show that the structural orientations and local compositional inhomogeneities within a single QD and the surrounding wet layer can be probed in a screening fashion by scanning X-ray diffraction microscopy and X-ray fluorescence with a few tens of nanometers-sized synchrotron radiation beam. The presented measurement protocol can be used to cull the best single QD from the enormous number of self-assembled dots grown simultaneously. The obtained results show that the elemental composition and resultant strain profiles of a QD are sensitive to in-plane crystallographic directions. We also observe that lattice expansion after a certain composition-limit introduces shear strain within a QD, enabling the possibility of controlled chiral-QD formation. Nanoscale chirality and compositional anisotropy, contradictory to common assumptions, need to be incorporated into existing theoretical models to predict the optical properties of single-photon sources and to further tune the epitaxial growth process of self-assembled quantum structures.

2.
Nanoscale ; 15(17): 8019-8028, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37070420

RESUMO

The ordering structures of non-polar carbon tetrachloride liquid compressed to nano-scales between parallel substrates is studied in this work. The theoretical considerations show that the potential well formed by the confined parallel substrates induces orientational ordering of non-polar molecules. Through molecular dynamic (MD) simulations, the relations between various ordered structures of a non-polar liquid (carbon tetrachloride) and the confined gap size are demonstrated. The density distribution shows that the confinement does affect the ordering modes and induces an orientational ordering of molecules at the solid-liquid interface under extreme confinement conditions. This molecular orientation suggested from the theoretical model and MD simulation is directly supported by the experimental studies for the first time. The X-ray reflectivity data reveal a strong layering effect with splitting of the density profile in C and Cl-rich sublayers. The investigation shows that the liquid structure factor in confinement has a characteristic length similar to the short-range ordering in bulk, but the confined structure is strongly influenced by the surface potential and the interface properties. This introduces preferred molecular orientation and ordering which are not favorable in the bulk phase. As the orientational ordering is closely related to crystallization, our results provide a new perspective to control the crystallization in nano-confined space by compression.

3.
Eur Phys J Plus ; 137(12): 1312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532653

RESUMO

PETRA III at DESY is one of the brightest synchrotron radiation sources worldwide. It serves a broad international multidisciplinary user community from academia to industry at currently 25 specialised beamlines. With a storage-ring energy of 6 GeV, it provides mainly hard to high-energy X-rays for versatile experiments in a very broad range of scientific fields. It is ideally suited for an upgrade to the ultra-low emittance source PETRA IV, owing to its large circumference of 2304 m. With a targeted storage ring emittance of 20 × 5 pm 2 rad 2 , PETRA IV will reach spectral brightnesses two to three orders of magnitude higher than today. The unique beam parameters will make PETRA IV the ultimate in situ 3D microscope for biological, chemical, and physical processes helping to address key questions in health, energy, mobility, information technology, and earth and environment.

4.
Nanoscale Horiz ; 5(7): 1065-1072, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32542274

RESUMO

The self-assembly of nanoparticles into highly ordered crystals is largely influenced by variations in the size and shape of the constituent particles, with crystallization generally not observed if their polydispersity is too large. Here, we report on size selectivity in the self-assembly of rounded cubic maghemite nanoparticles into three-dimensional mesocrystals. Different X-ray scattering techniques are used to study and compare a nanoparticle dispersion that is used later for self-assembly, an ensemble of mesocrystals grown on a substrate, as well as an individual mesocrystal. The individual µm-sized mesocrystal is isolated using a focused-ion-beam-based technique and investigated by the diffraction of a micro-focused X-ray beam. Structural analysis reveals that individual mesocrystals have a drastically smaller size dispersity of nanoparticles than that in the initial dispersion, implying very strong size selectivity during self-assembly. The small size dispersity of the nanoparticles within individual mesocrystals is accompanied by a very narrow lattice parameter distribution. In contrast, the lattice parameter distribution within all mesocrystals of an ensemble is about four times wider than that of individual mesocrystals, indicating significant size fractionalization between mesocrystals during self-assembly. The small size dispersity within each mesocrystal has important implications for their physical properties.

5.
Nanoscale ; 11(48): 23304-23317, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31788679

RESUMO

Nanoporous media exhibit structures significantly smaller than the wavelengths of visible light and can thus act as photonic metamaterials. Their optical functionality is not determined by the properties of the base materials, but rather by tailored, multiscale structures, in terms of precise pore shape, geometry, and orientation. Embedding liquid crystals in pore space provides additional opportunities to control light-matter interactions at the single-pore, meta-atomic scale. Here, we present temperature-dependent 3D reciprocal space mapping using synchrotron-based X-ray diffraction in combination with high-resolution birefringence experiments on disk-like mesogens (HAT6) imbibed in self-ordered arrays of parallel cylindrical pores 17 to 160 nm across in monolithic anodic aluminium oxide (AAO). In agreement with Monte Carlo computer simulations we observe a remarkably rich self-assembly behaviour, unknown from the bulk state. It encompasses transitions between the isotropic liquid state and discotic stacking in linear columns as well as circular concentric ring formation perpendicular and parallel to the pore axis. These textural transitions underpin an optical birefringence functionality, tuneable in magnitude and in sign from positive to negative via pore size, pore surface-grafting and temperature. Our study demonstrates that the advent of large-scale, self-organised nanoporosity in monolithic solids along with confinement-controllable phase behaviour of liquid-crystalline matter at the single-pore scale provides a reliable and accessible tool to design materials with adjustable optical anisotropy, and thus offers versatile pathways to fine-tune polarisation-dependent light propagation speeds in materials. Such a tailorability is at the core of the emerging field of transformative optics, allowing, e.g., adjustable light absorbers and extremely thin metalenses.

6.
J Phys Chem Lett ; 10(7): 1634-1638, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30900899

RESUMO

Films of carbon tetrachloride (CCl4) confined in slit geometry between two flat diamond substrates down to a few tens of Angstroms are studied by combining X-ray reflectivity with in-plane and out-of-plane X-ray scattering. The confined films form a heterogeneous structure with coexisting regions of liquid and crystalline phases. The liquid phase shows short-range ordering normal to the surfaces of the substrates. The experiments directly show the ability of the confinement to induce crystal objects, which is a long-discussed issue in the literature. The surface structure and morphology of the substrates may influence the actual realization of the crystalline phase in confinement.

7.
J Synchrotron Radiat ; 25(Pt 5): 1277-1290, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179167

RESUMO

The PETRA IV project aims at upgrading the present synchrotron radiation source PETRA III at DESY into an ultralow-emittance source. Being diffraction limited up to X-rays of about 10 keV, PETRA IV will be ideal for three-dimensional X-ray microscopy of biological, chemical and physical processes under realistic conditions at length scales from atomic dimensions to millimetres and time scales down to the sub-nanosecond regime. In this way, it will enable groundbreaking studies in many fields of science and industry, such as health, energy, earth and environment, mobility and information technology. The science case is reviewed and the current state of the conceptual design is summarized, discussing a reference lattice, a hybrid multi-bend achromat with an interleaved sextupole configuration based on the ESRF-EBS design, in more detail as well as alternative lattice concepts.

8.
Phys Rev Lett ; 120(6): 067801, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29481274

RESUMO

Disklike molecules with aromatic cores spontaneously stack up in linear columns with high, one-dimensional charge carrier mobilities along the columnar axes, making them prominent model systems for functional, self-organized matter. We show by high-resolution optical birefringence and synchrotron-based x-ray diffraction that confining a thermotropic discotic liquid crystal in cylindrical nanopores induces a quantized formation of annular layers consisting of concentric circular bent columns, unknown in the bulk state. Starting from the walls this ring self-assembly propagates layer by layer towards the pore center in the supercooled domain of the bulk isotropic-columnar transition and thus allows one to switch on and off reversibly single, nanosized rings through small temperature variations. By establishing a Gibbs free energy phase diagram we trace the phase transition quantization to the discreteness of the layers' excess bend deformation energies in comparison to the thermal energy, even for this near room-temperature system. Monte Carlo simulations yielding spatially resolved nematic order parameters, density maps, and bond-orientational order parameters corroborate the universality and robustness of the confinement-induced columnar ring formation as well as its quantized nature.

9.
Rev Sci Instrum ; 87(11): 113904, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910596

RESUMO

A new method for fast x-ray reflectivity data acquisition is presented. The method is based on a fast rotating, slightly tilted sample reflecting to a stationary mounted position sensitive detector and it allows for measurements of reflectivity curves in a quarter of a second. The resolution in q-space mainly depends on the beam properties and the pixel size of the detector. Maximum qz-value of 1 Å-1 can be achieved. The time-temperature depending structure changes of poly(N-isopropylacrylamide) thin films were investigated in situ by applying the fast-reflectivity setup. The results are presented in this paper as illustration of the method and proof of principle.

10.
Sci Rep ; 5: 15732, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26506865

RESUMO

Epitaxial InAs quantum dots grown on GaAs substrate are being used in several applications ranging from quantum communications to solar cells. The growth mechanism of these dots also helps us to explore fundamental aspects of self-organized processes. Here we show that composition and strain profile of the quantum dots can be tuned by controlling in-plane density of the dots over the substrate with the help of substrate-temperature profile. The compositional profile extracted from grazing incidence x-ray measurements show substantial amount of inter-diffusion of Ga and In within the QD as a function of height in the low-density region giving rise to higher variation of lattice parameters. The QDs grown with high in-plane density show much less spread in lattice parameter giving almost flat density of In over the entire height of an average QD and much narrower photoluminescence (PL) line. The results have been verified with three different amounts of In deposition giving systematic variation of the In composition as a function of average quantum dot height and average energy of PL emission.

11.
J Synchrotron Radiat ; 22(3): 675-87, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931084

RESUMO

Powder X-ray diffraction techniques largely benefit from the superior beam quality provided by high-brilliance synchrotron light sources in terms of photon flux and angular resolution. The High Resolution Powder Diffraction Beamline P02.1 at the storage ring PETRA III (DESY, Hamburg, Germany) combines these strengths with the power of high-energy X-rays for materials research. The beamline is operated at a fixed photon energy of 60 keV (0.207 Šwavelength). A high-resolution monochromator generates the highly collimated X-ray beam of narrow energy bandwidth. Classic crystal structure determination in reciprocal space at standard and non-ambient conditions are an essential part of the scientific scope as well as total scattering analysis using the real space information of the pair distribution function. Both methods are complemented by in situ capabilities with time-resolution in the sub-second regime owing to the high beam intensity and the advanced detector technology for high-energy X-rays. P02.1's efficiency in solving chemical and crystallographic problems is illustrated by presenting key experiments that were carried out within these fields during the early stage of beamline operation.

12.
ACS Nano ; 8(12): 12676-81, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25401294

RESUMO

X-ray reflectivity measurements of increasingly more complex interfaces involving silicon (001) substrates reveal the existence of a thin low-density layer intruding between the single-crystalline silicon and the amorphous native SiO2 terminating it. The importance of accounting for this layer in modeling silicon/liquid interfaces and silicon-supported monolayers is demonstrated by comparing fits of the measured reflectivity curves by models including and excluding this layer. The inclusion of this layer, with 6-8 missing electrons per silicon unit cell area, consistent with one missing oxygen atom whose bonds remain hydrogen passivated, is found to be particularly important for an accurate and high-resolution determination of the surface normal density profile from reflectivities spanning extended momentum transfer ranges, now measurable at modern third-generation synchrotron sources.

13.
Soft Matter ; 10(38): 7577-87, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25115726

RESUMO

Dendrimers are highly branched polymeric nanoparticles whose structure and topology, largely, have determined their efficacy in a wide range of studies performed so far. An area of immense interest is their potential as drug and gene delivery vectors. Realizing this potential, depending on the nature of cell surface-dendrimer interactions, here we report controlled model membrane penetration and reorganization, using a model supported lipid bilayer and poly(ether imine) (PETIM) dendrimers of two generations. By systematically varying the areal density of the lipid bilayers, we provide a microscopic insight, through a combination of high resolution scattering, atomic force microscopy and atomistic molecular dynamics simulations, into the mechanism of PETIM dendrimer membrane penetration, pore formation and membrane re-organization induced by such interactions. Our work represents the first systematic observation of a regular barrel-like membrane spanning pore formation by dendrimers, tunable through lipid bilayer packing, without membrane disruption.


Assuntos
Dendrímeros/química , Bicamadas Lipídicas/química , Modelos Químicos , Polietilenoimina/química , Microscopia de Força Atômica , Permeabilidade
14.
J Synchrotron Radiat ; 21(Pt 1): 45-56, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24365915

RESUMO

The study of liquid-liquid interfaces with X-ray scattering methods requires special instrumental considerations. A dedicated liquid surface diffractometer employing a tilting double-crystal monochromator in Bragg geometry has been designed. This diffractometer allows reflectivity and grazing-incidence scattering measurements of an immobile mechanically completely decoupled liquid sample, providing high mechanical stability. The available energy range is from 6.4 to 29.4 keV, covering many important absorption edges. The instrument provides access in momentum space out to 2.54 Å(-1) in the surface normal and out to 14.8 Å(-1) in the in-plane direction at 29.4 keV. Owing to its modular design the diffractometer is also suitable for heavy apparatus such as vacuum chambers. The instrument performance is described and examples of X-ray reflectivity studies performed under in situ electrochemical control and on biochemical model systems are given.


Assuntos
Difração de Raios X/instrumentação , Desenho de Equipamento , Espalhamento de Radiação
15.
Proc Natl Acad Sci U S A ; 110(17): 6663-8, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23553838

RESUMO

Crystal nucleation and growth at a liquid-liquid interface is studied on the atomic scale by in situ Å-resolution X-ray scattering methods for the case of liquid Hg and an electrochemical dilute electrolyte containing Pb(2+), F(-), and Br(-) ions. In the regime negative of the Pb amalgamation potential Φ(rp) = -0.70 V, no change is observed from the surface-layered structure of pure Hg. Upon potential-induced release of Pb(2+) from the Hg bulk at Φ > Φ(rp), the formation of an intriguing interface structure is observed, comprising a well-defined 7.6-Å-thick adlayer, decorated with structurally related 3D crystallites. Both are identified by their diffraction peaks as PbFBr, preferentially aligned with their axis along the interface normal. X-ray reflectivity shows the adlayer to consist of a stack of five ionic layers, forming a single-unit-cell-thick crystalline PbFBr precursor film, which acts as a template for the subsequent quasiepitaxial 3D crystal growth. This growth behavior is assigned to the combined action of electrostatic and short-range chemical interactions.


Assuntos
Cristalização/métodos , Eletroquímica/métodos , Eletrólitos/química , Mercúrio/química , Modelos Químicos , Metais/química , Espalhamento de Radiação , Eletricidade Estática , Síncrotrons
16.
Langmuir ; 22(6): 2598-604, 2006 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-16519459

RESUMO

We prepared silicalite-1 microcrystal (MC) monolayers on a Si wafer using two different types of molecular linkages, namely, through chloropropyl (CP) groups and through CP/polyethylene imine/CP groups. Whereas the scanning electron microscope images of the two MC monolayers look very much alike but hardly give any information on the nature of molecular linkage between the monolayers and the substrate, their reflectivity curves are distinctively different, despite the fact that the thicknesses of the molecular linkage layers ( approximately 10-20 A) are negligibly small compared to the thicknesses of MC monolayers, ( approximately 3200 A). On the basis of the atomic force microscopic images of the MC surfaces, a rough surface layer with the thickness of approximately 160 A was introduced onto the surface of each MC to conduct a meaningful simulation of the curves with the recursive Parratt formalism. The obtained thickness, roughness, and density of each layer were reasonable, indicating that X-ray reflectivity is a very useful tool for the characterization of very thin layers of molecular linkages existing between much thicker MC monolayers and the substrate.


Assuntos
Zeolitas/química , Microscopia Eletrônica de Varredura , Espectrofotometria Ultravioleta , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...