Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 155(1): 420-435, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38240669

RESUMO

The Perseverance rover is carrying out an original acoustic experiment on Mars: the SuperCam microphone records the spherical acoustic waves generated by laser sparks at distances from 2 m to more than 8 m. These N-shaped acoustic waves scatter from the multiple local heterogeneities of the turbulent atmosphere. Therefore, large and random fluctuations of sound travel time and intensity develop as the waves cross the medium. The variances of the travel times and the scintillation index (normalized variance of the sound intensity) are studied within the mathematical formalism of the propagation of spherical acoustic waves through thermal turbulence to infer statistical properties of the Mars atmospheric temperature fluctuation field. The comparison with the theory is made by simplifying assumptions that do not include wind fluctuations and diffraction effects. Two Earth years (about one Martian year) of observations acquired during the maximum convective period (10:00-14:00 Mars local time) show a good agreement between the dataset and the formalism: the travel time variance diverges from the linear Chernov solution exactly where the density of occurrence of the first caustic reaches its maximum. Moreover, on average, waves travel faster than the mean speed of sound due to a fast path effect, which is also observed on Earth. To account for the distribution of turbulent eddies, several power spectra are tested and the best match to observation is obtained with a generalized von Karman spectrum with a shallower slope than the Kolmogorov cascade, ϕ(k)∝(1+k2L2)-4/3. It is associated with an outer scale of turbulence, L, of 11 cm at 2 m above the surface and a standard deviation of 6 K over 9 s for the temperature. These near-surface atmospheric properties are consistent with a weak to moderate wave scattering regime around noon with little saturation. Overall, this study presents an innovative and promising methodology to probe the near-surface atmospheric turbulence on Mars.

2.
Phys Rev Lett ; 131(7): 076002, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37656857

RESUMO

Superfluid helium nanodroplets are an ideal environment for the formation of metastable, self-organized dopant nanostructures. However, the presence of vortices often hinders their formation. Here, we demonstrate the generation of vortex-free helium nanodroplets and explore the size range in which they can be produced. From x-ray diffraction images of xenon-doped droplets, we identify that single compact structures, assigned to vortex-free aggregation, prevail up to 10^{8} atoms per droplet. This finding builds the basis for exploring the assembly of far-from-equilibrium nanostructures at low temperatures.

3.
Sci Adv ; 9(8): eade5839, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812315

RESUMO

The structure and dynamics of isolated nanosamples in free flight can be directly visualized via single-shot coherent diffractive imaging using the intense and short pulses of x-ray free-electron lasers. Wide-angle scattering images encode three-dimensional (3D) morphological information of the samples, but its retrieval remains a challenge. Up to now, effective 3D morphology reconstructions from single shots were only achieved via fitting with highly constrained models, requiring a priori knowledge about possible geometries. Here, we present a much more generic imaging approach. Relying on a model that allows for any sample morphology described by a convex polyhedron, we reconstruct wide-angle diffraction patterns from individual silver nanoparticles. In addition to known structural motives with high symmetries, we retrieve imperfect shapes and agglomerates that were not previously accessible. Our results open unexplored routes toward true 3D structure determination of single nanoparticles and, ultimately, 3D movies of ultrafast nanoscale dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...