Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 193(3): 535-545, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32419047

RESUMO

Worldwide, stream water is increasingly loaded with sediments and nutrients, due to processes such as accelerated soil erosion and overfertilization caused by agricultural intensification. This leads to increases in eutrophication and silting up of bottom sediments. Floodplains can play an important role in mitigating these problems, by removing sediment from rivers via water filtration and retention. Fine sediment is accumulated on the soil in between plants as well as on plant surfaces. However, it is still poorly understood how plant species facilitate leaf surface sedimentation via their leaf traits. In a flume experiment, we investigated to what extent the leaf traits (area, length, perimeter, pinnation, pubescence, surface roughness, flexibility and wettability) influence leaf surface sedimentation. We exposed leaves of 30 plant species to an artificial flood, and measured the fine sediment load the leaves captured after 24 h. Our results show that leaf traits overall explain 65% of the variation of fine sedimentation on leaves. Especially adaxial pubescence and leaf area strongly drove sedimentation. Hairy leaves accumulate more sediment per leaf area, presumably, because hairs create a buffer zone of reduced flow velocity which enhances sedimentation between the hairs. Additionally, for leaves with no or few hairs, sedimentation decreased with increasing leaf area, because most likely the more turbulent boundary layer of larger leaves allows less sediment to settle. Our results provide a first understanding of how plants can be selected based on their leaf traits for maximizing the sediment retention on floodplains, thereby providing a key ecosystem service.


Assuntos
Ecossistema , Inundações , Sedimentos Geológicos , Folhas de Planta , Rios , Solo
2.
Ecol Evol ; 7(17): 6779-6789, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28904759

RESUMO

Browsing of tree saplings by deer hampers forest regeneration in mixed forests across Europe and North America. It is well known that tree species are differentially affected by deer browsing, but little is known about how different facets of diversity, such as species richness, identity, and composition, affect browsing intensity at different spatial scales. Using forest inventory data from the Hainich National Park, a mixed deciduous forest in central Germany, we applied a hierarchical approach to model the browsing probability of patches (regional scale) as well as the species-specific proportion of saplings browsed within patches (patch scale). We found that, at the regional scale, the probability that a patch was browsed increased with certain species composition, namely with low abundance of European beech (Fagus sylvatica L.) and high abundance of European ash (Fraxinus excelsior L.), whereas at the patch scale, the proportion of saplings browsed per species was mainly determined by the species' identity, providing a "preference ranking" of the 11 tree species under study. Interestingly, at the regional scale, species-rich patches were more likely to be browsed; however, at the patch scale, species-rich patches showed a lower proportion of saplings per species browsed. Presumably, diverse patches attract deer, but satisfy nutritional needs faster, such that fewer saplings need to be browsed. Some forest stand parameters, such as more open canopies, increased the browsing intensity at either scale. By showing the effects that various facets of diversity, as well as environmental parameters, exerted on browsing intensity at the regional as well as patch scale, our study advances the understanding of mammalian herbivore-plant interactions across scales. Our results also indicate which regeneration patches and species are (least) prone to browsing and show the importance of different facets of diversity for the prediction and management of browsing intensity and regeneration dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA