Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 415(15): 2873-2890, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37036484

RESUMO

There is growing concern from scientists, policy makers, and the public about the contamination of natural and indoor environments with plastics, particularly micro/nanoplastics. Typically, characterizing microplastics in environmental samples requires extensive sample processing to isolate particles, followed by spectroscopic methodologies to identify particle polymer composition. Spectroscopic techniques are limited in their ability to provide polymer mass or advanced chemical composition (e.g., chemical additive content), which are important for toxicological assessments. To achieve mass fraction quantification and chemical characterization of plastics in environmental samples, many researchers have turned to thermoanalytical spectrometric approaches, particularly pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Sample preparation for Py-GC/MS may be approached similarly to techniques needed for spectroscopic approaches (e.g., isolate particles on a filter), employ pressurized solvent extraction, or use ultrafiltration techniques to concentrate nanoplastics. Great strides have been made in using calibration curves to quantify plastics in complex matrices. However, the approaches to the pyrolysis thermal program, as well as calibrant and sample preparation, are inconsistent, requiring refinement and harmonization. This review provides a critical synthesis of previous Py-GC/MS work and highlights opportunities for novel and improved Py-GC/MS analysis of plastics in the future.

2.
Sci Total Environ ; 866: 161191, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36592912

RESUMO

Microplastics are a persistent and increasing environmental hazard. They have been reported to interact with a variety of biotic and abiotic environmental stressors, but the ramifications of such interactions are largely unknown. We investigated virus-induced mortalities in a commercially important salmonid following exposure to microplastics, plastic microfibers, and natural (non-plastic) microparticles. Microplastics or microparticles alone were not lethal. Mortality increased significantly when fish were co-exposed to virus and microplastics, particularly microfibers, compared to virus alone. This presents the unique finding that microplastics (not natural microparticulate matter) may have a significant impact on population health when presented with another stressor. Further, we found that mortality correlated with host viral load, mild gill inflammation, immune responses, and transmission potential. We hypothesize that microplastics can compromise host tissues, allowing pathogens to bypass defenses. Further research regarding this mechanism and the interplay between microplastics and infectious disease are paramount, considering microplastics increasing environmental burden.


Assuntos
Salmonidae , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade
3.
Fish Shellfish Immunol ; 114: 102-111, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33930547

RESUMO

Environmental microplastic pollution (including polystyrene, PS) may have detrimental effects on the health of aquatic organisms. Accumulation of PS microplastics has been reported to affect innate immune cells and inflammatory responses in fish. To date, knowledge on effects of microplastics on the antibody response is still very limited. Here, we investigated effects of small (0.8-20 µm) PS microplastics on the abundance of B lineage cells in primary cultures of developing immune cells from the anterior kidney of rainbow trout. Both purchased PS microbeads and PS microparticles generated from consumer products were used as microplastic sources. We first show that rainbow trout phagocytic B cells efficiently took up small (0.83-3.1 µm) PS microbeads within hours of exposure. In addition, our data revealed that PS microplastic exposure most significantly decreased the abundance of a population of non-phagocytic developing B cells, using both flow cytometry and RT-qPCR. PS microplastics-induced loss of developing B cells further correlated with reduced gene expression of RAG1 and the membrane form of immunoglobulin heavy chains mu and tau. Based on the induced loss of developing B cells observed in our in vitro studies, we speculate that in vivo, chronic PS microplastic-exposure may lead to suboptimal IgM/IgT levels in response to pathogens in teleost species. Considering the highly conserved nature of vertebrate B lymphopoiesis it is likely that PS microplastics will similarly reduce antibody responses in higher vertebrate species, including humans. Further, RAG1 provides an effective biomarker to determine effects of PS microplastics on B cell development in teleost species.


Assuntos
Linfócitos B/efeitos dos fármacos , Microplásticos/toxicidade , Oncorhynchus mykiss , Poliestirenos/toxicidade , Animais , Biomarcadores , Carpas , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Genes RAG-1/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Microplásticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA