Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 46(10): 2433-2436, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33988602

RESUMO

A new, to the best of our knowledge, 3D additive manufacturing technique utilizing particle-loaded ink jet printing to fabricate transparent ceramic Yb:YAG planar waveguides for laser gain media was demonstrated. Rheological optimization of YAG particle-loaded inks resulted in successful droplet formation and printing resolution. Planar waveguides composed of a Yb:YAG guide encased in undoped YAG cladding were printed with guide thicknesses ranging between 25 and 350 µm and consolidated to high optical quality via solid-state sintering. Sufficiently low optical (1-3%/cm) and intermodal scatter allowed single-mode propagation with a core/clad index difference of $\Delta {n}\sim{5.0} \times {{10}^{- 4}}$ (corresponding to 3 at.% Yb). The waveguides were cladding-pumped longitudinally with a 940 nm diode array resulting in 23.6% slope efficiency in 2 ms pulsed operation.

2.
Phys Med Biol ; 57(14): 4545-54, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22722678

RESUMO

Detection of x-rays and gamma rays with high spatial resolution can be achieved with scintillators that are optically coupled to electron-multiplying charge-coupled devices (EMCCDs). These can be operated at typical frame rates of 50 Hz with low noise. In such a set-up, scintillation light within each frame is integrated after which the frame is analyzed for the presence of scintillation events. This method allows for the use of scintillator materials with relatively long decay times of a few milliseconds, not previously considered for use in photon-counting gamma cameras, opening up an unexplored range of dense scintillators. In this paper, we test CdWO4 and transparent polycrystalline ceramics of Lu2O3:Eu and (Gd,Lu)2O3:Eu as alternatives to currently used CsI:Tl in order to improve the performance of EMCCD-based gamma cameras. The tested scintillators were selected for their significantly larger cross-sections at 140 keV ((99m)Tc) compared to CsI:Tl combined with moderate to good light yield. A performance comparison based on gamma camera spatial and energy resolution was done with all tested scintillators having equal (66%) interaction probability at 140 keV. CdWO4, Lu2O3:Eu and (Gd,Lu)2O3:Eu all result in a significantly improved spatial resolution over CsI:Tl, albeit at the cost of reduced energy resolution. Lu2O3:Eu transparent ceramic gives the best spatial resolution: 65 µm full-width-at-half-maximum (FWHM) compared to 147 µm FWHM for CsI:Tl. In conclusion, these 'slow' dense scintillators open up new possibilities for improving the spatial resolution of EMCCD-based scintillation cameras.


Assuntos
Diagnóstico por Imagem/instrumentação , Equipamentos e Provisões Elétricas , Raios gama , Contagem de Cintilação/instrumentação , Câmaras gama , Fótons , Probabilidade , Compostos Radiofarmacêuticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...