Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 92020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33164744

RESUMO

Insulin secretion from ß-cells is reduced at the onset of type-1 and during type-2 diabetes. Although inflammation and metabolic dysfunction of ß-cells elicit secretory defects associated with type-1 or type-2 diabetes, accompanying changes to insulin granules have not been established. To address this, we performed detailed functional analyses of insulin granules purified from cells subjected to model treatments that mimic type-1 and type-2 diabetic conditions and discovered striking shifts in calcium affinities and fusion characteristics. We show that this behavior is correlated with two subpopulations of insulin granules whose relative abundance is differentially shifted depending on diabetic model condition. The two types of granules have different release characteristics, distinct lipid and protein compositions, and package different secretory contents alongside insulin. This complexity of ß-cell secretory physiology establishes a direct link between granule subpopulation and type of diabetes and leads to a revised model of secretory changes in the diabetogenic process.


Diabetes is a disease that occurs when sugar levels in the blood can no longer be controlled by a hormone called insulin. People with type 1 diabetes lose the ability to produce insulin after their immune system attacks the ß-cells in their pancreas that make this hormone. People with type 2 diabetes develop the disease when ß-cells become exhausted from increased insulin demand and stop producing insulin. ß-cells store insulin in small compartments called granules. When blood sugar levels rise, these granules fuse with the cell membrane allowing ß-cells to release large quantities of insulin at once. This fusion is disrupted early in type 1 diabetes, but later in type 2: the underlying causes of these disruptions are unclear. In the laboratory, signals that trigger inflammation and molecules called fatty acids can mimic type 1 or type 2 diabetes respectively when applied to insulin-producing cells. Kreutzberger, Kiessling et al. wanted to know whether pro-inflammatory molecules and fatty acids affect insulin granules differently at the molecular level. To do this, insulin-producing cells were grown in the lab and treated with either fatty acids or pro-inflammatory molecules. The insulin granules of these cells were then isolated. Next, the composition of the granules and how they fused to lab-made membranes that mimic the cell membrane was examined. The experiments revealed that healthy ß-cells have two types of granules, each with a different version of a protein called synaptotagmin. Cells treated with molecules mimicking type 1 diabetes lost granules with synaptotagmin-7, while granules with synaptotagmin-9 were lost in cells treated with fatty acids to imitate type 2 diabetes. Each type of granule responded differently to calcium levels in the cell and secreted different molecules, indicating that each elicits a different diabetic response in the body. These findings suggest that understanding how insulin granules are formed and regulated may help find treatments for type 1 and 2 diabetes, possibly leading to therapies that reverse the loss of different types of granules. Additionally, the molecules of these granules may also be used as markers to determine the stage of diabetes. More broadly, these results show how understanding how molecule release changes with disease in different cell types may help diagnose or stage a disease.


Assuntos
Cálcio/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Exocitose , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Colesterol/metabolismo , Citocinas/farmacologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Exocitose/efeitos dos fármacos , Humanos , Insulina/genética , Células Secretoras de Insulina/efeitos dos fármacos , Células PC12 , Palmitatos/farmacologia , Ratos , Proteínas SNARE/metabolismo , Via Secretória , Esfingomielinas/metabolismo , Sinaptotagminas/metabolismo
2.
ACS Sens ; 4(5): 1230-1235, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30990011

RESUMO

Interest in nanopore technology has been growing due to nanopores' unique capabilities in small molecule sensing, measurement of protein folding, and low-cost DNA and RNA sequencing. The E. coli ß-barrel outer membrane protein OmpG is an excellent alternative to other protein nanopores because of its single polypeptide chain. However, the flexibility of its extracellular loops ultimately limits applications in traditional biosensing. We deleted several residues in and near loop 6 of OmpG. The dynamic structure of the new construct determined by NMR shows that loops 1, 2, 6, and 7 have reduced flexibilities compared to those of wild-type. Electrophysiological measurements show that the new design virtually eliminates flickering between open and closed states across a wide pH range. Modification of the pore lumen with a copper chelating moiety facilitates detection of small molecules. As proof of concept, we demonstrate concurrent single-molecule biosensing of glutamate and adenosine triphosphate.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Técnicas Biossensoriais/métodos , Proteínas de Escherichia coli/química , Nanoporos , Porinas/química , Trifosfato de Adenosina/análise , Ácido Glutâmico/análise , Modelos Moleculares , Conformação Proteica em Folha beta
3.
Nat Struct Mol Biol ; 25(10): 911-917, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30291360

RESUMO

The regulated exocytotic release of neurotransmitter and hormones is accomplished by a complex protein machinery whose core consists of SNARE proteins and the calcium sensor synaptotagmin-1. We propose a mechanism in which the lipid membrane is intimately involved in coupling calcium sensing to release. We found that fusion of dense core vesicles, derived from rat PC12 cells, was strongly linked to the angle between the cytoplasmic domain of the SNARE complex and the plane of the target membrane. We propose that, as this tilt angle increases, force is exerted on the SNARE transmembrane domains to drive the merger of the two bilayers. The tilt angle markedly increased following calcium-mediated binding of synaptotagmin to membranes, strongly depended on the surface electrostatics of the membrane, and was strictly coupled to the lipid order of the target membrane.


Assuntos
Exocitose , Modelos Moleculares , Sinaptotagminas/fisiologia , Vesículas Transportadoras/química , Animais , Sinalização do Cálcio , Metabolismo dos Lipídeos/fisiologia , Células PC12 , Domínios Proteicos , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/fisiologia , Ratos , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Proteínas SNARE/fisiologia , Sinaptotagminas/química , Sinaptotagminas/metabolismo , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/fisiologia
4.
J Biol Chem ; 293(44): 17267-17277, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30237175

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen that causes nosocomial infections. The P. aeruginosa outer membrane contains specific porins that enable substrate uptake, with the outer membrane protein OprG facilitating transport of small, uncharged amino acids. However, the pore size of an eight-stranded ß-barrel monomer of OprG is too narrow to accommodate even the smallest transported amino acid, glycine, raising the question of how OprG facilitates amino acid uptake. Pro-92 of OprG is critically important for amino acid transport, with a P92A substitution inhibiting transport and the NMR structure of this variant revealing that this substitution produces structural changes in the barrel rim and restricts loop motions. OprG may assemble into oligomers in the outer membrane (OM) whose subunit interfaces could form a transport channel. Here, we explored the contributions of the oligomeric state and the extracellular loops to OprG's function. Using chemical cross-linking to determine the oligomeric structures of both WT and P92A OprG in native outer membranes and atomic force microscopy, and single-molecule fluorescence of the purified proteins reconstituted into lipid bilayers, we found that both protein variants form oligomers, supporting the notion that subunit interfaces in the oligomer could provide a pathway for amino acid transport. Furthermore, performing transport assays with loop-deleted OprG variants, we found that these variants also can transport small amino acids, indicating that the loops are not solely responsible for substrate transport. We propose that OprG functions as an oligomer and that conformational changes in the barrel-loop region might be crucial for its activity.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Substituição de Aminoácidos , Aminoácidos/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Transporte Biológico , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Conformação Proteica , Pseudomonas aeruginosa/genética
5.
Sci Adv ; 3(7): e1603208, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28776026

RESUMO

Regulated exocytosis is a process by which neurotransmitters, hormones, and secretory proteins are released from the cell in response to elevated levels of calcium. In cells, secretory vesicles are targeted to the plasma membrane, where they dock, undergo priming, and then fuse with the plasma membrane in response to calcium. The specific roles of essential proteins and how calcium regulates progression through these sequential steps are currently incompletely resolved. We have used purified neuroendocrine dense-core vesicles and artificial membranes to reconstruct in vitro the serial events that mimic SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-dependent membrane docking and fusion during exocytosis. Calcium recruits these vesicles to the target membrane aided by the protein CAPS (calcium-dependent activator protein for secretion), whereas synaptotagmin catalyzes calcium-dependent fusion; both processes are dependent on phosphatidylinositol 4,5-bisphosphate. The soluble proteins Munc18 and complexin-1 are necessary to arrest vesicles in a docked state in the absence of calcium, whereas CAPS and/or Munc13 are involved in priming the system for an efficient fusion reaction.


Assuntos
Cálcio/metabolismo , Exocitose , Vesículas Secretórias/metabolismo , Transporte Biológico , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Bicamadas Lipídicas , Fusão de Membrana , Lipídeos de Membrana/metabolismo , Modelos Biológicos
6.
Structure ; 23(12): 2234-2245, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26655471

RESUMO

OprG is an outer membrane protein of Pseudomonas aeruginosa whose function as an antibiotic-sensitive porin has been controversial and not well defined. Circumstantial evidence led to the proposal that OprG might transport hydrophobic compounds by using a lateral gate in the barrel wall thought to be lined by three conserved prolines. To test this hypothesis and to find the physiological substrates of OprG, we reconstituted the purified protein into liposomes and found it to facilitate the transport of small amino acids such as glycine, alanine, valine, and serine, which was confirmed by Pseudomonas growth assays. The structures of wild-type and a critical proline mutant were determined by nuclear magnetic resonance in dihexanoyl-phosphatidylcholine micellar solutions. Both proteins formed eight-stranded ß-barrels with flexible extracellular loops. The interfacial prolines did not form a lateral gate in these structures, but loop 3 exhibited restricted motions in the inactive P92A mutant but not in wild-type OprG.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Sequência de Aminoácidos , Aminoácidos/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sequência Conservada , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Terciária de Proteína
7.
Nano Lett ; 14(3): 1674-80, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24524682

RESUMO

Membrane proteins are prime drug targets as they control the transit of information, ions, and solutes across membranes. Here, we present a membrane-on-nanopore platform to analyze nonelectrogenic channels and transporters that are typically not accessible by electrophysiological methods in a multiplexed manner. The silicon chip contains 250,000 femtoliter cavities, closed by a silicon dioxide top layer with defined nanopores. Lipid vesicles containing membrane proteins of interest are spread onto the nanopore-chip surface. Transport events of ligand-gated channels were recorded at single-molecule resolution by high-parallel fluorescence decoding.

8.
Langmuir ; 29(32): 10174-82, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23898918

RESUMO

Vesicles are dynamic supramolecular structures with a bilayer membrane consisting of lipids or synthetic amphiphiles enclosing an aqueous compartment. Lipid vesicles have often been considered as mimics for biological cells. In this paper, we present a novel strategy for the preparation of three-dimensional multilayered structures in which vesicles containing amphiphilic ß-cyclodextrin are interconnected by proteins using cyclodextrin guests as bifunctional linker molecules. We compared two pairs of adhesion molecules for the immobilization of vesicles: mannose-concanavalin A and biotin-streptavidin. Microcontact printing and thiol-ene click chemistry were used to prepare suitable substrates for the vesicles. Successful immobilization of intact vesicles through the mannose-concanavalin A and biotin-streptavidin motifs was verified by fluorescence microscopy imaging and dynamic light scattering, while the vesicle adlayer was characterized by quartz crystal microbalance with dissipation monitoring. In the case of the biotin-streptavidin motif, up to six layers of intact vesicles could be immobilized in a layer-by-layer fashion using supramolecular interactions. The construction of vesicle multilayers guided by noncovalent vesicle-vesicle junctions can be taken as a minimal model for artificial biological tissue.


Assuntos
Biotina/química , Concanavalina A/química , Manose/química , Proteínas/química , Estreptavidina/química , beta-Ciclodextrinas/química , Química Click , Substâncias Macromoleculares/química , Microscopia de Fluorescência , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
9.
Biochem Biophys Res Commun ; 431(3): 519-23, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23321307

RESUMO

While transmembrane proteins and transporters comprise one of the largest protein families, their use in biosensors like biochips or lab-on-a-chip devices has so far been limited by their demanding requirements of a stable and compartmentalized lipid environment. A possible remedy lies in the tethering of proteoliposomes containing the reconstituted transmembrane protein to the biosensoric surface. As a proof of concept, we reconstituted the human ABC transporter MRP3 into biotinylated proteoliposomes and tethered those to a gold surface coated with streptavidin on a biotinylated self-assembled thiol monolayer. The tethering process was investigated by quartz crystal microbalance with dissipation monitoring. The final assembly of tethered proteoliposomes exhibited biological activity in terms of drug-stimulated ATP hydrolysis and substrate translocation. The presented facile immobilization approach can be easily extended to other transmembrane proteins as it does not require any modification of the protein and will open up transmembrane proteins for future application in biosensors.


Assuntos
Técnicas Biossensoriais , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteolipídeos/química , Trifosfato de Adenosina , Biotinilação , Ouro , Humanos , Hidrólise , Proteínas Imobilizadas/química , Estreptavidina/química , Propriedades de Superfície
10.
Biophys Chem ; 171: 31-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23176825

RESUMO

ABC transporters are involved in countless processes from lipid excretion over cellular detoxification to multidrug resistance of cancer cells. The latter is especially conferred by the ABCC subfamily also called multidrug resistance-associated proteins (MRPs) that excrete a variety of amphipathics including anticancer drugs by ATP-dependent transport. As the mechanisms of substrate translocation and ATP hydrolysis are still unclear for MRPs, we investigated the kinetics of both processes with focus on cooperativity and coupling between ATPase activity and substrate transport using purified MRP3 in proteoliposomes. Although the ATP-dependent uptake of amphipathics and the hydrophilic 5(6)-carboxy-2'-7'-dichlorofluorescein (CDCF) into the lumen of proteoliposomes showed affinity constants similar to those reported for cell-based assays, the maximal uptake rates were up to 250 times higher. Moreover, all substrates showed cooperative interactions of two subunits. Upon stimulation with amphipathics, ATPase activity of MRP3 increased from 80nmol/(mgmin) to 180nmol/(mgmin) showing positive cooperativity with a Hill coefficient of 2. While Hill coefficient and maximal ATPase activity were found to be substrate independent, the affinity constants are characteristic for a given substrate and correspond to the value for transport. Therefore, cooperative interactions of the two nucleotide binding domains (NBDs) in MRP3 are mediated by substrate binding to the transmembrane domains (TMDs). In contrast to amphipathic substrates, CDCF did not stimulate ATPase activity despite being transported in an ATP-dependent manner. This indicates that ATP hydrolysis and substrate translocation are half-coupled in MRP3 as CDCF shuttles on a basal TMD activity resulting from the basal ATPase activity.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transporte Biológico , Humanos , Hidrólise , Cinética , Especificidade por Substrato
11.
J Am Chem Soc ; 131(49): 17943-53, 2009 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19911789

RESUMO

Chlorination of 1,2,3,4-tetracyclohexyl-cyclo-tetraphosphine (2) by PhICl(2) or PCl(5) in the presence of Me(3)SiOTf or GaCl(3) provides a stepwise approach to salts of the first cyclo-phosphino-chlorophosphonium cations [Cy(4)P(4)Cl](+) ([19](+)) and [Cy(4)P(4)Cl(2)](2+) ([20](2+)). The analogous iodo derivative [Cy(4)P(4)I](+) ([17](+)) is obtained as the tetraiodogallate salt from reaction of 2 with I(2) in the presence of GaI(3). Reactions of the dication [20](2+) with PMe(3) or dmpe effect a dissociation of the cyclic framework resulting in the formation of salts containing [Me(3)PPCyPCyPMe(3)](2+) ([27](2+)), [dmpeCyP](2+) ([29](2+)), and [dmpeCyPCyP](2+) ([30](2+)), respectively. The new cations represent phosphine complexes of the [PCy](2+) and [P(2)Cy(2)](2+) cationic fragments from [20](2+), demonstrating the coordinate nature of the phosphinophosphonium bonds in cyclo-phosphino-halophosphonium cations. The compounds have been characterized by NMR spectroscopy, single crystal X-ray crystallography, and Raman spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...