Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38921917

RESUMO

The hexagonal ferrite h-YbFeO3 grown on YSZ(111) by pulsed laser deposition is foreseen as a promising single multiferroic candidate where ferroelectricity and antiferromagnetism coexist for future applications at low temperatures. We studied in detail the microstructure as well as the temperature dependence of the magnetic properties of the devices by comparing the heterostructures grown directly on YSZ(111) (i.e., YbPt_Th0nm) with h-YbFeO3 films deposited on substrates buffered with platinum Pt/YSZ(111) and in dependence on the Pt underlayer film thickness (i.e., YbPt_Th10nm, YbPt_Th40nm, YbPt_Th55nm, and YbPt_Th70nm). The goal was to deeply understand the importance of the crystal quality and morphology of the Pt underlayer for the h-YbFeO3 layer crystal quality, surface morphology, and the resulting physical properties. We demonstrate the relevance of homogeneity, continuity, and hillock formation of the Pt layer for the h-YbFeO3 microstructure in terms of crystal structure, mosaicity, grain boundaries, and defect distribution. The findings of transmission electron microscopy and X-ray diffraction reciprocal space mapping characterization enable us to conclude that an optimum film thickness for the Pt bottom electrode is ThPt = 70 nm, which improves the crystal quality of h-YbFeO3 films grown on Pt-buffered YSZ(111) in comparison with h-YbFeO3 films grown on YSZ(111) (i.e., YbPt_Th0nm). The latter shows a disturbance in the crystal structure, in the up-and-down atomic arrangement of the ferroelectric domains, as well as in the Yb-Fe exchange interactions. Therefore, an enhancement in the remanent and in the total magnetization was obtained at low temperatures below 50 K for h-YbFeO3 films deposited on Pt-buffered substrates Pt/YSZ(111) when the Pt underlayer reached ThPt = 70 nm.

2.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38668205

RESUMO

The structure and the chemical composition of individual layers as well as of interfaces belonging to the two heterostructures M1 (BaFe12O19/YbFeO3/YSZ) and M2 (YbFeO3/BaFe12O19/YSZ) grown by pulsed laser deposition on yttria-stabilized zirconia (YSZ) substrates are deeply characterized by using a combination of methods such as high-resolution X-ray diffraction, transmission electron microscopy (TEM), and atomic-resolution scanning TEM with energy-dispersive X-ray spectroscopy. The temperature-dependent magnetic properties demonstrate two distinct heterostructures with different coercivity, anisotropy fields, and first anisotropy constants, which are related to the defect concentrations within the individual layers and to the degree of intermixing at the interface. The heterostructure with the stacking order BaFe12O19/YbFeO3, i.e., M1, exhibits a distinctive interface without any chemical intermixture, while an Fe-rich crystalline phase is observed in M2 both in atomic-resolution EDX maps and in mass density profiles. Additionally, M1 shows high c-axis orientation, which induces a higher anisotropy constant K1 as well as a larger coercivity due to a high number of phase boundaries. Despite the existence of a canted antiferromagnetic/ferromagnetic combination (T < 140 K), both heterostructures M1 and M2 do not reveal any detectable exchange bias at T = 50 K. Additionally, compressive residual strain on the BaM layer is found to be suppressing the ferromagnetism, thus reducing the Curie temperature (Tc) in the case of M1. These findings suggest that M1 (BaFe12O19/YbFeO3/YSZ) is suitable for magnetic storage applications.

3.
Nanomaterials (Basel) ; 14(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38668219

RESUMO

The morphology and crystal structure of Pt films grown by pulsed laser deposition (PLD) on yttria-stabilized zirconia (YSZ)at high temperatures Tg = 900 °C was studied for four different film thicknesses varying between 10 and 70 nm. During the subsequent growth of the capping layer, the thermal stability of the Pt was strongly influenced by the Pt film's thickness. Furthermore, these later affected the film morphology, the crystal structure and hillocks size, and distribution during subsequent growth at Tg = 900 °C for a long duration. The modifications in the morphology as well as in the structure of the Pt film without a capping layer, named also as the as-grown and encapsulated layers in the bilayer system, were examined by a combination of microscopic and scattering methods. The increase in the thickness of the deposited Pt film brought three competitive phenomena into occurrence, such as 3D-2D morphological transition, dewetting, and hillock formation. The degree of coverage, film continuity, and the crystal quality of the Pt film were significantly improved by increasing the deposition time. An optimum Pt film thickness of 70 nm was found to be suitable for obtaining a hillock-free Pt bottom electrode which also withstood the dewetting phenomena revealed during the subsequent growth of capping layers. This achievement is crucial for the deposition of functional bottom electrodes in ferroelectric and multiferroic heterostructure systems.

4.
iScience ; 26(9): 107683, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37680485

RESUMO

Magnetic nanoparticles can be functionalized in many ways for biomedical applications. Here, we combine four advantageous features in a novel Fe-Pt-Yb2O3 core-shell nanoparticle. (a) The nanoparticles have a size of 10 nm allowing them to diffuse through neuronal tissue. (b) The particles are superparamagnetic after synthesis and ferromagnetic after annealing, enabling directional control by magnetic fields, enhance NMRI contrast, and hyperthermia treatment. (c) After neutron-activation of the shell, they carry low-energetic, short half-life ß-radiation from 175Yb, 177Yb, and 177Lu. (d) Additionally, the particles can be optically visualized by plasmonic excitation and luminescence. To demonstrate the potential of the particles for cancer treatment, we exposed cultured human glioblastoma cells (LN-18) to non-activated and activated particles to confirm that the particles are internalized, and that the ß-radiation of the radioisotopes incorporated in the neutron-activated shell of the nanoparticles kills more than 98% of the LN-18 cancer cells, promising for future anti-cancer applications.

5.
Langmuir ; 39(40): 14308-14327, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37751568

RESUMO

We have studied the effect of platinum underlayer for two deposited thicknesses on the microstructure, crystalline quality, morphology, chemical composition, and magnetic properties as well as magnetic domain formation of BaFe12O19 (BaM) grown on YSZ(111) by pulsed laser deposition (PLD). We found that PLD platinum deposited with a thickness of 25 nm cannot withstand the dewetting phenomenon occurring during the subsequent BaM layer growth. A smooth and continuous Pt underlayer that possesses a sharp interface and omits the intermixing between the BaM and substrate was successfully achieved for a deposited Pt film thickness of 75 nm. Independent of the thickness of the deposited Pt layer, the c-axis orientation as well as coercivity Hc and the anisotropy HA fields were significantly improved due to a remarkable improvement of lattice mismatch in comparison with the BaM layer grown without a Pt underlayer on YSZ(111). By applying high-resolution X-ray diffraction, scanning and transmission electron microscopy (SEM/TEM), and atomically resolved scanning TEM imaging combined with energy-dispersive X-ray spectroscopy, as well as atomic and magnetic force microscopy, a comprehensive investigation of both structure and chemical composition of the deposited BaM films and their interfacial regions was performed. This study aimed to correlate the enhancement of the overall magnetic properties and of the local spin magnetic domain orientation with the modification of BaM microstructure and chemical composition at the nanometer scale due to the Pt underlayer. Finally, we attempted to understand the mechanisms that control the magnetic properties of these BaM films in order to be able to tailor them.

6.
J Phys Chem B ; 116(33): 9873-81, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22834887

RESUMO

The pH is one of the key parameters governing protein conformation and activity. In protein crystals, however, the pH is so far not accessible by experiment. Here, we report on the optical detection of the pH in a lysozyme crystal employing the pH-sensitive fluorescent dyes SNARF-1 and SNARF-4F. The molecular probes were loaded into the crystal by diffusion. Two-dimensional fluorescence spectra of the labeled protein crystal were recorded, and the average pH of the crystal at different bath pH's was determined by calibrating fluorescence peak ratios. In addition, we used two-photon microscopy to spatially resolve the pH inside a lysozyme crystal three-dimensionally and to follow pH changes in response to a pH change of the bath over time. At equilibrium at bath pH between 5.5 and 8.0, we found a pH in the water-filled crystal channels that was ΔpH = -0.3 to -1.0 lower than that of the bath. This corresponds to a 2- to 10-fold higher proton concentration in the crystal channels than in the bath. The lower pH at equilibrium in the crystal channels can be explained by slower proton diffusion in the channels than in the bath and a resulting proton accumulation in the crystal for conservation of mass and so an equilibrium of proton flux.


Assuntos
Muramidase/química , Cristalização , Cristalografia por Raios X , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Sondas Moleculares/química , Muramidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...