Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(2): 481-494.e24, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38194965

RESUMO

Cellular form and function emerge from complex mechanochemical systems within the cytoplasm. Currently, no systematic strategy exists to infer large-scale physical properties of a cell from its molecular components. This is an obstacle to understanding processes such as cell adhesion and migration. Here, we develop a data-driven modeling pipeline to learn the mechanical behavior of adherent cells. We first train neural networks to predict cellular forces from images of cytoskeletal proteins. Strikingly, experimental images of a single focal adhesion (FA) protein, such as zyxin, are sufficient to predict forces and can generalize to unseen biological regimes. Using this observation, we develop two approaches-one constrained by physics and the other agnostic-to construct data-driven continuum models of cellular forces. Both reveal how cellular forces are encoded by two distinct length scales. Beyond adherent cell mechanics, our work serves as a case study for integrating neural networks into predictive models for cell biology.


Assuntos
Proteínas do Citoesqueleto , Aprendizado de Máquina , Adesão Celular , Citoplasma/metabolismo , Proteínas do Citoesqueleto/metabolismo , Adesões Focais/metabolismo , Modelos Biológicos
2.
ArXiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36911285

RESUMO

Cellular form and function emerge from complex mechanochemical systems within the cytoplasm. No systematic strategy currently exists to infer large-scale physical properties of a cell from its many molecular components. This is a significant obstacle to understanding biophysical processes such as cell adhesion and migration. Here, we develop a data-driven biophysical modeling approach to learn the mechanical behavior of adherent cells. We first train neural networks to predict forces generated by adherent cells from images of cytoskeletal proteins. Strikingly, experimental images of a single focal adhesion protein, such as zyxin, are sufficient to predict forces and generalize to unseen biological regimes. This protein field alone contains enough information to yield accurate predictions even if forces themselves are generated by many interacting proteins. We next develop two approaches - one explicitly constrained by physics, the other more agnostic - that help construct data-driven continuum models of cellular forces using this single focal adhesion field. Both strategies consistently reveal that cellular forces are encoded by two different length scales in adhesion protein distributions. Beyond adherent cell mechanics, our work serves as a case study for how to integrate neural networks in the construction of predictive phenomenological models in cell biology, even when little knowledge of the underlying microscopic mechanisms exist.

3.
Methods Mol Biol ; 2600: 169-182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587097

RESUMO

A family of proteins have been identified that recognize damaged, strained actin filaments in stress fibers. These proteins are often referred to as strain- or force-sensing and trigger downstream signaling mechanisms that can facilitate repair at these strain sites. Here we describe a method using high-resolution microscopy to screen and quantify the mechanosensitive recruitment of proteins to these stress fiber strain sites. Strain sites are induced using spatially controlled illumination of UV light to locally damage actin stress fibers. Recruitment of potential strain-sensing proteins can then either be compared to (Blanchoin, Physiol Rev 94, 235-263, 2014) a known control (e.g., zyxin-GFP) or (Hoffman, Mol Biol Cell 23, 1846-1859, 2012) the pre-damaged stress fiber protein distribution. With this method, strain-sensing proteins and their dynamic association with stress fiber strain sites can be reproducibly measured and compared.


Assuntos
Actinas , Fibras de Estresse , Fibras de Estresse/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Transdução de Sinais , Fenômenos Mecânicos
4.
J Cell Biol ; 221(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36222836

RESUMO

Spatiotemporally dynamic microtubule acetylation underlies diverse physiological and pathological events. Despite its ubiquity, the molecular mechanisms that regulate the sole microtubule acetylating agent, α-tubulin-N-acetyltransferase-1 (α-TAT1), remain obscure. Here, we report that dynamic intracellular localization of α-TAT1 along with its catalytic activity determines efficiency of microtubule acetylation. Specifically, we newly identified a conserved signal motif in the intrinsically disordered C-terminus of α-TAT1, consisting of three competing regulatory elements-nuclear export, nuclear import, and cytosolic retention. Their balance is tuned via phosphorylation by CDK1, PKA, and CK2, and dephosphorylation by PP2A. While the unphosphorylated form binds to importins and resides both in cytosol and nucleus, the phosphorylated form binds to specific 14-3-3 adapters and accumulates in the cytosol for maximal substrate access. Unlike other molecules with a similar phospho-regulated signal motif, α-TAT1 uniquely uses the nucleus as a hideout. This allosteric spatial regulation of α-TAT1 function may help uncover a spatiotemporal code of microtubule acetylation in normal and aberrant cell behavior.


Assuntos
Acetiltransferases , Microtúbulos , Tubulina (Proteína) , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Transporte Ativo do Núcleo Celular , Citosol , Proteínas Intrinsicamente Desordenadas/metabolismo , Carioferinas/metabolismo , Microtúbulos/metabolismo , Fosforilação , Tubulina (Proteína)/metabolismo
5.
Nat Mater ; 21(3): 366-377, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34663953

RESUMO

Mechanotransduction is a process by which cells sense the mechanical properties of their surrounding environment and adapt accordingly to perform cellular functions such as adhesion, migration and differentiation. Integrin-mediated focal adhesions are major sites of mechanotransduction and their connection with the actomyosin network is crucial for mechanosensing as well as for the generation and transmission of forces onto the substrate. Despite having emerged as major regulators of cell adhesion and migration, the contribution of microtubules to mechanotransduction still remains elusive. Here, we show that talin- and actomyosin-dependent mechanosensing of substrate rigidity controls microtubule acetylation (a tubulin post-translational modification) by promoting the recruitment of α-tubulin acetyltransferase 1 (αTAT1) to focal adhesions. Microtubule acetylation tunes the mechanosensitivity of focal adhesions and Yes-associated protein (YAP) translocation. Microtubule acetylation, in turn, promotes the release of the guanine nucleotide exchange factor GEF-H1 from microtubules to activate RhoA, actomyosin contractility and traction forces. Our results reveal a fundamental crosstalk between microtubules and actin in mechanotransduction that contributes to mechanosensitive cell adhesion and migration.


Assuntos
Mecanotransdução Celular , Microtúbulos , Citoesqueleto de Actina/metabolismo , Adesão Celular , Adesões Focais/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
6.
Trends Cell Biol ; 30(9): 720-735, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32674938

RESUMO

Cell migration is a highly dynamic process driven by the cytoskeleton, which mainly comprises the actin microfilaments, microtubules, and intermediate filaments. During migration, cells polarize and form protrusions at the front, where new adhesions are formed. These nascent adhesions mature into focal adhesions that transmit the traction forces required for movement. All of these steps are coupled to major cytoskeletal rearrangements and are controlled by a wide array of signaling cascades. The constant crosstalk between actin, microtubules, and intermediate filaments ensures their coordinated dynamics to facilitate cell migration. Here, we first describe how master regulators, such as RhoGTPases, can simultaneously control the three cytoskeletal structures. We then summarize the recent crosstalk mechanisms by which cytoskeletal networks can locally regulate one another in order to function in a coordinated and efficient manner during migration.


Assuntos
Movimento Celular , Citoesqueleto/metabolismo , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Adesão Celular , Polaridade Celular , Humanos
7.
J Cell Sci ; 132(19)2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31597743

RESUMO

Cell adhesion to the extracellular matrix is essential for cellular processes, such as migration and invasion. In response to cues from the microenvironment, integrin-mediated adhesions alter cellular behaviour through cytoskeletal rearrangements. The tight association of the actin cytoskeleton with adhesive structures has been extensively studied, whereas the microtubule network in this context has gathered far less attention. In recent years, however, microtubules have emerged as key regulators of cell adhesion and migration through their participation in adhesion turnover and cellular signalling. In this Review, we focus on the interactions between microtubules and integrin-mediated adhesions, in particular, focal adhesions and podosomes. Starting with the association of microtubules with these adhesive structures, we describe the classical role of microtubules in vesicular trafficking, which is involved in the turnover of cell adhesions, before discussing how microtubules can also influence the actin-focal adhesion interplay through RhoGTPase signalling, thereby orchestrating a very crucial crosstalk between the cytoskeletal networks and adhesions.


Assuntos
Adesões Focais/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Citoesqueleto/metabolismo , Humanos , Transdução de Sinais/fisiologia
8.
J Cell Sci ; 132(7)2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30858195

RESUMO

Microtubules play a crucial role in mesenchymal migration by controlling cell polarity and the turnover of cell adhesive structures on the extracellular matrix. The polarized functions of microtubules imply that microtubules are locally regulated. Here, we investigated the regulation and role of two major tubulin post-translational modifications, acetylation and detyrosination, which have been associated with stable microtubules. Using primary astrocytes in a wound healing assay, we show that these tubulin modifications are independently regulated during cell polarization and differently affect cell migration. In contrast to microtubule detyrosination, αTAT1 (ATAT1)-mediated microtubule acetylation increases in the vicinity of focal adhesions and promotes cell migration. We further demonstrate that αTAT1 increases focal adhesion turnover by promoting Rab6-positive vesicle fusion at focal adhesions. Our results highlight the specificity of microtubule post-translational modifications and bring new insight into the regulatory functions of tubulin acetylation.This article has an associated First Person interview with the first author of the paper.


Assuntos
Astrócitos/citologia , Adesões Focais , Microtúbulos/química , Tubulina (Proteína)/química , Acetilação , Animais , Movimento Celular , Polaridade Celular , Proteínas Associadas aos Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Ratos
9.
J Cell Biol ; 217(9): 3031-3044, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29980627

RESUMO

Mesenchymal cell migration relies on the coordinated regulation of the actin and microtubule networks that participate in polarized cell protrusion, adhesion, and contraction. During collective migration, most of the traction forces are generated by the acto-myosin network linked to focal adhesions at the front of leader cells, which transmit these pulling forces to the followers. Here, using an in vitro wound healing assay to induce polarization and collective directed migration of primary astrocytes, we show that the intermediate filament (IF) network composed of vimentin, glial fibrillary acidic protein, and nestin contributes to directed collective movement by controlling the distribution of forces in the migrating cell monolayer. Together with the cytoskeletal linker plectin, these IFs control the organization and dynamics of the acto-myosin network, promoting the actin-driven treadmilling of adherens junctions, thereby facilitating the polarization of leader cells. Independently of their effect on adherens junctions, IFs influence the dynamics and localization of focal adhesions and limit their mechanical coupling to the acto-myosin network. We thus conclude that IFs promote collective directed migration in astrocytes by restricting the generation of traction forces to the front of leader cells, preventing aberrant tractions in the followers, and by contributing to the maintenance of lateral cell-cell interactions.


Assuntos
Astrócitos/fisiologia , Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Filamentos Intermediários/metabolismo , Animais , Astrócitos/metabolismo , Células Cultivadas , Proteína Glial Fibrilar Ácida/metabolismo , Nestina/metabolismo , Ratos , Vimentina/metabolismo , Cicatrização/fisiologia
10.
Biol Cell ; 110(3): 49-64, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29388220

RESUMO

Cells sense and respond to the biochemical and physical properties of the extracellular matrix (ECM) through adhesive structures that bridge the cell cytoskeleton and the surrounding environment. Integrin-mediated adhesions interact with specific ECM proteins and sense the rigidity of the substrate to trigger signalling pathways that, in turn, regulate cellular processes such as adhesion, motility, proliferation and differentiation. This process, called mechanotransduction, influenced by the involvement of different integrin subtypes and their high ECM-ligand binding specificity, contributes to the cell-type-specific mechanical responses. In this review, we describe how the expression of particular integrin subtypes affects cellular adaptation to substrate rigidity. We then explain the role of integrins and associated proteins in mechanotransduction, focusing on their specificity in mechanosensing and force transmission.


Assuntos
Integrinas/metabolismo , Mecanotransdução Celular/fisiologia , Animais , Matriz Extracelular/metabolismo , Humanos
11.
Cytoskeleton (Hoboken) ; 73(11): 680-690, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27615744

RESUMO

LARP4 is a La-related RNA-binding protein implicated in regulating mRNA translation, which interacts with poly(A)-binding protein (PABP). We previously identified LARP4 in an RNAi screen as one of several genes that regulate the shape of PC3 prostate cancer cells. Here we show that LARP4 depletion induces cell elongation in PC3 cells and MDA-MB-231 breast cancer cells. LARP4 depletion increases cell migration and invasion, as well as inducing invasive cell protrusions in 3D Matrigel. Conversely, LARP4 over-expression reduces cell elongation and increases cell circularity. LARP4 mutations are found in a variety of cancers. Introduction of some of these cancer-associated mutations, including a truncation mutant, into LARP4 enhances its effects on cell morphology. The truncation mutant shows enhanced interaction with PABP. We propose that LARP4 inhibits migration and invasion of cancer cells, and that some cancer-associated mutations stimulate these effects of LARP4. © 2016 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc.


Assuntos
Autoantígenos/metabolismo , Neoplasias da Mama/metabolismo , Movimento Celular , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Neoplasias da Próstata/metabolismo , Ribonucleoproteínas/metabolismo , Autoantígenos/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Masculino , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Ligação a Poli(A)/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Ribonucleoproteínas/genética , Antígeno SS-B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...