Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ambio ; 48(2): 139-152, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29949079

RESUMO

The field of systematic conservation planning has grown substantially, with hundreds of publications in the peer-reviewed literature and numerous applications to regional conservation planning globally. However, the extent to which systematic conservation plans have influenced management is unclear. This paper analyses factors that facilitate the transition from assessment to implementation in conservation planning, in order to help integrate assessment and implementation into a seamless process. We propose a framework for designing implementation strategies, taking into account three critical planning aspects: processes, inputs, and context. Our review identified sixteen processes, which we broadly grouped into four themes and eight inputs. We illustrate how the framework can be used to inform context-dependent implementation strategies, using the process of 'engagement' as an example. The example application includes both lessons learned from successfully implemented plans across the engagement spectrum, and highlights key barriers that can hinder attempts to bridge the assessment-implementation gap.


Assuntos
Conservação dos Recursos Naturais
2.
Sci Rep ; 5: 17539, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26631984

RESUMO

The first international goal for establishing marine protected areas (MPAs) to conserve the ocean's biodiversity was set in 2002. Since 2006, the Convention on Biological Diversity (CBD) has driven MPA establishment, with 193 parties committed to protecting >10% of marine environments globally by 2020, especially 'areas of particular importance for biodiversity' (Aichi target 11). This has resulted in nearly 10 million km(2) of new MPAs, a growth of ~360% in a decade. Unlike on land, it is not known how well protected areas capture marine biodiversity, leaving a significant gap in our understanding of existing MPAs and future protection requirements. We assess the overlap of global MPAs with the ranges of 17,348 marine species (fishes, mammals, invertebrates), and find that 97.4% of species have <10% of their ranges represented in stricter conservation classes. Almost all (99.8%) of the very poorly represented species (<2% coverage) are found within exclusive economic zones, suggesting an important role for particular nations to better protect biodiversity. Our results offer strategic guidance on where MPAs should be placed to support the CBD's overall goal to avert biodiversity loss. Achieving this goal is imperative for nature and humanity, as people depend on biodiversity for important and valuable services.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/estatística & dados numéricos , Animais , Bases de Dados Factuais , Ecossistema , Peixes , Invertebrados , Mamíferos , Oceanos e Mares
3.
Conserv Biol ; 29(3): 649-56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25923989

RESUMO

Conservation of representative facets of geophysical diversity may help conserve biological diversity as the climate changes. We conducted a global classification of terrestrial geophysical diversity and analyzed how land protection varies across geophysical diversity types. Geophysical diversity was classified in terms of soil type, elevation, and biogeographic realm and then compared to the global distribution of protected areas in 2012. We found that 300 (45%) of 672 broad geophysical diversity types currently meet the Convention on Biological Diversity's Aichi Target 11 of 17% terrestrial areal protection, which suggested that efforts to implement geophysical diversity conservation have a substantive basis on which to build. However, current protected areas were heavily biased toward high elevation and low fertility soils. We assessed 3 scenarios of protected area expansion and found that protection focused on threatened species, if fully implemented, would also protect an additional 29% of geophysical diversity types, ecoregional-focused protection would protect an additional 24%, and a combined scenario would protect an additional 42%. Future efforts need to specifically target low-elevation sites with productive soils for protection and manage for connectivity among geophysical diversity types. These efforts may be hampered by the sheer number of geophysical diversity facets that the world contains, which makes clear target setting and prioritization an important next step.


Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais/tendências , Espécies em Perigo de Extinção , Fenômenos Geológicos
4.
Nature ; 515(7525): 67-73, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25373676

RESUMO

Originally conceived to conserve iconic landscapes and wildlife, protected areas are now expected to achieve an increasingly diverse set of conservation, social and economic objectives. The amount of land and sea designated as formally protected has markedly increased over the past century, but there is still a major shortfall in political commitments to enhance the coverage and effectiveness of protected areas. Financial support for protected areas is dwarfed by the benefits that they provide, but these returns depend on effective management. A step change involving increased recognition, funding, planning and enforcement is urgently needed if protected areas are going to fulfil their potential.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Ecossistema , Meio Selvagem , Animais , Organismos Aquáticos , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/legislação & jurisprudência , Ecologia/economia , Ecologia/legislação & jurisprudência , Ecologia/estatística & dados numéricos , Governo Federal
5.
PLoS Biol ; 12(6): e1001891, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24960185

RESUMO

Governments have agreed to expand the global protected area network from 13% to 17% of the world's land surface by 2020 (Aichi target 11) and to prevent the further loss of known threatened species (Aichi target 12). These targets are interdependent, as protected areas can stem biodiversity loss when strategically located and effectively managed. However, the global protected area estate is currently biased toward locations that are cheap to protect and away from important areas for biodiversity. Here we use data on the distribution of protected areas and threatened terrestrial birds, mammals, and amphibians to assess current and possible future coverage of these species under the convention. We discover that 17% of the 4,118 threatened vertebrates are not found in a single protected area and that fully 85% are not adequately covered (i.e., to a level consistent with their likely persistence). Using systematic conservation planning, we show that expanding protected areas to reach 17% coverage by protecting the cheapest land, even if ecoregionally representative, would increase the number of threatened vertebrates covered by only 6%. However, the nonlinear relationship between the cost of acquiring land and species coverage means that fivefold more threatened vertebrates could be adequately covered for only 1.5 times the cost of the cheapest solution, if cost efficiency and threatened vertebrates are both incorporated into protected area decision making. These results are robust to known errors in the vertebrate range maps. The Convention on Biological Diversity targets may stimulate major expansion of the global protected area estate. If this expansion is to secure a future for imperiled species, new protected areas must be sited more strategically than is presently the case.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/estatística & dados numéricos , Espécies em Perigo de Extinção/estatística & dados numéricos , Internacionalidade , Animais , Vertebrados
7.
PLoS One ; 6(9): e25447, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21980459

RESUMO

Many governments have recently gone on record promising large-scale expansions of protected areas to meet global commitments such as the Convention on Biological Diversity. As systems of protected areas are expanded to be more comprehensive, they are more likely to be implemented if planners have realistic budget estimates so that appropriate funding can be requested. Estimating financial budgets a priori must acknowledge the inherent uncertainties and assumptions associated with key parameters, so planners should recognize these uncertainties by estimating ranges of potential costs. We explore the challenge of budgeting a priori for protected area expansion in the face of uncertainty, specifically considering the future expansion of protected areas in Queensland, Australia. The government has committed to adding ∼12 million ha to the reserve system, bringing the total area protected to 20 million ha by 2020. We used Marxan to estimate the costs of potential reserve designs with data on actual land value, market value, transaction costs, and land tenure. With scenarios, we explored three sources of budget variability: size of biodiversity objectives; subdivision of properties; and legal acquisition routes varying with tenure. Depending on the assumptions made, our budget estimates ranged from $214 million to $2.9 billion. Estimates were most sensitive to assumptions made about legal acquisition routes for leasehold land. Unexpected costs (costs encountered by planners when real-world costs deviate from assumed costs) responded non-linearly to inability to subdivide and percentage purchase of private land. A financially conservative approach--one that safeguards against large cost increases while allowing for potential financial windfalls--would involve less optimistic assumptions about acquisition and subdivision to allow Marxan to avoid expensive properties where possible while meeting conservation objectives. We demonstrate how a rigorous analysis can inform discussions about the expansion of systems of protected areas, including the identification of factors that influence budget variability.


Assuntos
Conservação dos Recursos Naturais/economia , Biodiversidade , Conservação dos Recursos Naturais/legislação & jurisprudência , Objetivos , Queensland , Análise de Regressão , Incerteza
8.
PLoS One ; 6(9): e24707, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21957458

RESUMO

Protected areas are effective at stopping biodiversity loss, but their placement is constrained by the needs of people. Consequently protected areas are often biased toward areas that are unattractive for other human uses. Current reporting metrics that emphasise the total area protected do not account for this bias. To address this problem we propose that the distribution of protected areas be evaluated with an economic metric used to quantify inequality in income--the Gini coefficient. Using a modified version of this measure we discover that 73% of countries have inequitably protected their biodiversity and that common measures of protected area coverage do not adequately reveal this bias. Used in combination with total percentage protection, the Gini coefficient will improve the effectiveness of reporting on the growth of protected area coverage, paving the way for better representation of the world's biodiversity.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Internacionalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...