Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 21937, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34754019

RESUMO

Topological Dirac semimetals (TDSs) offer an excellent opportunity to realize outstanding physical properties distinct from those of topological insulators. Since TDSs verified so far have their own problems such as high reactivity in the atmosphere and difficulty in controlling topological phases via chemical substitution, it is highly desirable to find a new material platform of TDSs. By angle-resolved photoemission spectroscopy combined with first-principles band-structure calculations, we show that ternary compound BaMg2Bi2 is a TDS with a simple Dirac-band crossing around the Brillouin-zone center protected by the C3 symmetry of crystal. We also found that isostructural SrMg2Bi2 is an ordinary insulator characterized by the absence of band inversion due to the reduction of spin-orbit coupling. Thus, XMg2Bi2 (X = Sr, Ba, etc.) serves as a useful platform to study the interplay among crystal symmetry, spin-orbit coupling, and topological phase transition around the TDS phase.

2.
Nano Lett ; 19(6): 3737-3742, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31038974

RESUMO

We have performed scanning angle-resolved photoemission spectroscopy with a nanometer-sized beam spot (nano-ARPES) on the cleaved surface of Pb5Bi24Se41, which is a member of the (PbSe)5(Bi2Se3)3 m homologous series (PSBS) with m = 4 consisting of alternate stacking of the topologically trivial insulator PbSe bilayer and four quintuple layers (QLs) of the topological insulator Bi2Se3. This allows us to visualize a mosaic of topological Dirac states at a nanometer scale coming from the variable thickness of the Bi2Se3 nanoislands (1-3 QLs) that remain on top of the PbSe layer after cleaving the PSBS crystal, because the local band structure of topological origin changes drastically with the thickness of the Bi2Se3 nanoislands. A comparison of the local band structure with that in ultrathin Bi2Se3 films on Si(111) gives us further insights into the nature of the observed topological states. This result demonstrates that nano-ARPES is a very useful tool for characterizing topological heterostructures.

3.
ACS Nano ; 9(4): 4050-5, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25853220

RESUMO

Observations of novel quantum phenomena expected for three-dimensional topological insulators (TIs) often require fabrications of thin-film devices and tuning of the Fermi level across the Dirac point. Since thin films have both top and bottom surfaces, an effective control of the surface chemical potential requires dual gating. However, a reliable dual-gating technique for TI thin films has not yet been developed. Here we report a comprehensive method to fabricate a dual-gated TI device and demonstrate tuning of the chemical potential of both surfaces across the Dirac points. The most important part of our method is the recipe for safely detaching high-quality, bulk-insulating (Bi(1-x)Sb(x))2Te3 thin films from sapphire substrates and transferring them to Si/SiO2 wafers that allow back gating. Fabrication of an efficient top gate by low-temperature deposition of a SiN(x) dielectric complements the procedure. Our dual-gated devices are shown to be effective in tuning the chemical potential in a wide range encompassing the Dirac points on both surfaces.

4.
Nat Commun ; 6: 6547, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25761780

RESUMO

It is well known that a topologically protected gapless state appears at an interface between a topological insulator and an ordinary insulator; however, the physics of the interface between a topological insulator and a metal has largely been left unexplored. Here we report a novel phenomenon termed topological proximity effect, which occurs between a metallic ultrathin film and a three-dimensional topological insulator. We study one bilayer of bismuth metal grown on the three-dimensional topological insulator material TlBiSe2, and by using spin- and angle-resolved photoemission spectroscopy, we found evidence that the topological Dirac-cone state migrates from the surface of TlBiSe2 to the attached one-bilayer Bi. We show that such a migration of the topological state occurs as a result of strong spin-dependent hybridization of the wave functions at the interface, which is also supported by our first-principles calculations. This discovery points to a new route to manipulating the topological properties of materials.

5.
Sci Technol Adv Mater ; 16(1): 014405, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27877743

RESUMO

In this article, practical methods for synthesizing Tl-based ternary III-V-VI2 chalcogenide TlBi(S[Formula: see text]Se x )2 are described in detail, along with characterization by x-ray diffraction and charge transport properties. The TlBi(S[Formula: see text]Se x )2 system is interesting because it shows a topological phase transition, where a topologically nontrivial phase changes to a trivial phase without changing the crystal structure qualitatively. In addition, Dirac semimetals whose bulk band structure shows a Dirac-like dispersion are considered to exist near the topological phase transition. The technique shown here is also generally applicable for other chalcogenide topological insulators, and will be useful for studying topological insulators and related materials.

6.
Phys Rev Lett ; 113(19): 196601, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25415913

RESUMO

We report successful spin injection into the surface states of topological insulators by using a spin pumping technique. By measuring the voltage that shows up across the samples as a result of spin pumping, we demonstrate that a spin-electricity conversion effect takes place in the surface states of bulk-insulating topological insulators Bi(1.5)Sb(0.5)Te(1.7)Se(1.3) and Sn-doped Bi(2)Te(2)Se. In this process, the injected spins are converted into a charge current along the Hall direction due to the spin-momentum locking on the surface state.

7.
Nano Lett ; 14(11): 6226-30, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25330016

RESUMO

We detected the spin polarization due to charge flow in the spin nondegenerate surface state of a three-dimensional topological insulator by means of an all-electrical method. The charge current in the bulk-insulating topological insulator Bi1.5Sb0.5Te1.7Se1.3 (BSTS) was injected/extracted through a ferromagnetic electrode made of Ni80Fe20, and an unusual current-direction-dependent magnetoresistance gave evidence for the appearance of spin polarization, which leads to a spin-dependent resistance at the BSTS/Ni80Fe20 interface. In contrast, our control experiment on Bi2Se3 gave null result. These observations demonstrate the importance of the Fermi-level control for the electrical detection of the spin polarization in topological insulators.

8.
Phys Rev Lett ; 112(13): 136802, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24745448

RESUMO

Electron scattering in the topological surface state (TSS) of the topological insulator Bi1.5Sb0.5Te1.7Se1.3 was studied using quasiparticle interference observed by scanning tunneling microscopy. It was found that not only the 180° backscattering but also a wide range of backscattering angles of 100°-180° are effectively prohibited in the TSS. This conclusion was obtained by comparing the observed scattering vectors with the diameters of the constant-energy contours of the TSS, which were measured for both occupied and unoccupied states using time- and angle-resolved photoemission spectroscopy. The robust protection from backscattering in the TSS is good news for applications, but it poses a challenge to the theoretical understanding of the transport in the TSS.

9.
Phys Rev Lett ; 110(21): 217601, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23745936

RESUMO

Quasiparticle dynamics on the topological surface state of Bi(2(3), Bi(2)Te(3), and superconducting Cu(x)Bi(2)Se(3) are studied by 7 eV laser-based angle resolved photoemission spectroscopy. We find strong mode couplings in the Dirac-cone surface states at energies of ~3 and ~15-20 meV associated with an exceptionally large coupling constant λ of ~3, which is one of the strongest ever reported for any material. This result is compatible with the recent observation of a strong Kohn anomaly in the surface phonon dispersion of Bi(2)Se(3), but it appears that the theoretically proposed "spin-plasmon" excitations realized in helical metals are also playing an important role. Intriguingly, the ~3 meV mode coupling is found to be enhanced in the superconducting state of Cu(x)Bi(2)Se(3).

10.
Phys Rev Lett ; 110(20): 206804, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-25167439

RESUMO

We have performed angle-resolved photoemission spectroscopy on the strongly spin-orbit coupled low-carrier density superconductor Sn(1-x)In(x)Te (x = 0.045) to elucidate the electronic states relevant to the possible occurrence of topological superconductivity, as recently reported for this compound based on point-contact spectroscopy. The obtained energy-band structure reveals a small holelike Fermi surface centered at the L point of the bulk Brillouin zone, together with a signature of a topological surface state, indicating that this material is a doped topological crystalline insulator characterized by band inversion and mirror symmetry. A comparison of the electronic states with a band-noninverted superconductor possessing a similar Fermi surface structure, Pb(1-x)Tl(x)Te, suggests that the anomalous behavior in the superconducting state of Sn(1-x)In(x)Te is related to the peculiar orbital characteristics of the bulk valence band and/or the presence of a topological surface state.

11.
Phys Rev Lett ; 109(18): 186804, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23215312

RESUMO

We performed systematic spin- and angle-resolved photoemission spectroscopy of TlBi(S(1-x)Se(x))(2) which undergoes a topological phase transition at x ~ 0.5. In TlBiSe(2) (x = 1.0), we revealed a helical spin texture of Dirac-cone surface states with an intrinsic in-plane spin polarization of ~0.8. The spin polarization still survives in the gapped surface states at x > 0.5, although it gradually weakens upon approaching x = 0.5 and vanishes in the nontopological phase. No evidence for the out-of-plane spin polarization was found, irrespective of x and momentum. The present results unambiguously indicate the topological origin of the gapped Dirac surface states, and also impose a constraint on models to explain the origin of mass acquisition of Dirac fermions.

12.
Phys Rev Lett ; 109(21): 217004, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23215610

RESUMO

The existence of topological superconductors preserving time-reversal symmetry was recently predicted, and they are expected to provide a solid-state realization of itinerant massless Majorana fermions and a route to topological quantum computation. Their first likely example, Cu(x)Bi(2)Se(3), was discovered last year, but the search for new materials has so far been hindered by the lack of a guiding principle. Here, we report point-contact spectroscopy experiments suggesting that the low-carrier-density superconductor Sn(1-x)In(x)Te is accompanied by surface Andreev bound states which, with the help of theoretical analysis, would give evidence for odd-parity pairing and topological superconductivity. The present and previous finding of possible topological superconductivity in Sn(1-x)In(x)Te and Cu(x)Bi(2)Se(3) suggests that odd-parity pairing favored by strong spin-orbit coupling is likely to be a common underlying mechanism for materializing topological superconductivity.

13.
Phys Rev Lett ; 109(6): 066803, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-23006293

RESUMO

The massless Dirac fermions residing on the surface of three-dimensional topological insulators are protected from backscattering and cannot be localized by disorder, but such protection can be lifted in ultrathin films when the three-dimensionality is lost. By measuring the Shubnikov-de Haas oscillations in a series of high-quality Bi2Se3 thin films, we revealed a systematic evolution of the surface conductance as a function of thickness and found a striking manifestation of the topological protection: The metallic surface transport abruptly diminishes below the critical thickness of ~6 nm, at which an energy gap opens in the surface state and the Dirac fermions become massive. At the same time, the weak antilocalization behavior is found to weaken in the gapped phase due to the loss of π Berry phase.

15.
Phys Rev Lett ; 108(11): 116801, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22540497

RESUMO

We have performed angle-resolved photoemission spectroscopy on Pb(Bi(1-x)Sb(x))2Te4, which is a member of lead-based ternary tellurides and has been theoretically proposed as a candidate for a new class of three-dimensional topological insulators. In PbBi2Te4, we found a topological surface state with a hexagonally deformed Dirac-cone band dispersion, indicating that this material is a strong topological insulator with a single topological surface state at the Brillouin-zone center. Partial replacement of Bi with Sb causes a marked change in the Dirac carrier concentration, leading to the sign change of Dirac carriers from n type to p type. The Pb(Bi(1-x)Sb(x))2Te4 system with tunable Dirac carriers thus provides a new platform for investigating exotic topological phenomena.

16.
Nat Commun ; 3: 636, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22273674

RESUMO

The three-dimensional topological insulator is a quantum state of matter characterized by an insulating bulk state and gapless Dirac cone surface states. Device applications of topological insulators require a highly insulating bulk and tunable Dirac carriers, which has so far been difficult to achieve. Here we demonstrate that Bi(2-x)Sb(x)Te(3-y)Se(y) is a system that simultaneously satisfies both of these requirements. For a series of compositions presenting bulk-insulating transport behaviour, angle-resolved photoemission spectroscopy reveals that the chemical potential is always located in the bulk band gap, whereas the Dirac cone dispersion changes systematically so that the Dirac point moves up in energy with increasing x, leading to a sign change of the Dirac carriers at x~0.9. Such a tunable Dirac cone opens a promising pathway to the development of novel devices based on topological insulators.

17.
Phys Rev Lett ; 109(23): 236804, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23368240

RESUMO

We have performed angle-resolved photoemission spectroscopy on (PbSe)(5)(Bi(2)Se(3))(3m), which forms a natural multilayer heterostructure consisting of a topological insulator and an ordinary insulator. For m=2, we observed a gapped Dirac-cone state within the bulk band gap, suggesting that the topological interface states are effectively encapsulated by block layers; furthermore, it was found that the quantum confinement effect of the band dispersions of Bi(2)Se(3) layers enhances the effective bulk band gap to 0.5 eV, the largest ever observed in topological insulators. For m=1, the Dirac-like state is completely gone, suggesting the disappearance of the band inversion in the Bi(2)Se(3) unit. These results demonstrate that utilization of naturally occurring heterostructures is a new promising strategy for manipulating the topological states and realizing exotic quantum phenomena.

18.
Phys Rev Lett ; 107(21): 217001, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22181913

RESUMO

A topological superconductor (TSC) is characterized by the topologically protected gapless surface state that is essentially an Andreev bound state consisting of Majorana fermions. While a TSC has not yet been discovered, the doped topological insulator Cu(x)Bi(2)Se(3), which superconducts below ∼3 K, has been predicted to possess a topological superconducting state. We report that the point-contact spectra on the cleaved surface of superconducting Cu(x)Bi(2)Se(3) present a zero-bias conductance peak (ZBCP) which signifies unconventional superconductivity. Theoretical considerations of all possible superconducting states help us conclude that this ZBCP is due to Majorana fermions and gives evidence for a topological superconductivity in Cu(x)Bi(2)Se(3). In addition, we found an unusual pseudogap that develops below ∼20 K and coexists with the topological superconducting state.

19.
J Org Chem ; 76(19): 8049-52, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21894888

RESUMO

Oxosumanenes were synthesized through benzylic oxidation. The electronic and redox properties were revealed to exhibit the expanded π-conjugation compared to sumanene. Single-crystal X-ray analysis of monooxosumanene showed columnar π-stacking in a concave-convex fashion. Stereoselective trimethylation of the trioxo derivative was performed via 1,2-addition to the carbonyl groups.

20.
Phys Rev Lett ; 107(1): 016801, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21797561

RESUMO

We show that in the new topological-insulator compound Bi(1.5)Sb(0.5)Te(1.7)Se(1.3) one can achieve a surfaced-dominated transport where the surface channel contributes up to 70% of the total conductance. Furthermore, it was found that in this material the transport properties sharply reflect the time dependence of the surface chemical potential, presenting a sign change in the Hall coefficient with time. We demonstrate that such an evolution makes us observe both Dirac holes and electrons on the surface, which allows us to reconstruct the surface band dispersion across the Dirac point.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...